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Problem Sheet 3: Statistics in Gravitational Wave Astronomy

1. (a) As in the question description we denote the two masses by m1 and m2, the
total mass byM = m1 +m2, the reduced mass by µ = m1m2/M , and the chirp
mass by
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We will use geometric units throughout, i.e., we set c = G = 1 so we don’t
need to worry about keeping track of these factors.

i. For a Newtonian binary, the motion is equivalent to that of a body of
mass µ orbiting in a fixed Newtonian potential with mass M . Denoting
the orbital radius by a (it is also the semi-major axis for a circular binary),
the orbital frequency is given by

2πf =

√
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and the total energy of the binary is

E = −Mµ

2a
.

A. The GW amplitude is determined by the quadrupole moment of the
spacetime

h ∼ Ïjk
D
, Ijk =

∫
ρxixjdV.

For a binary, the density is only non-zero at the location of the objects.
Using the effective-one-body analogy we deduce

I ∼ µa2 exp(2πift)

where the frequency is now twice the orbital frequency because we are
taking squares of positions, which vary at that frequency. It follows
that
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B. The GW energy loss is determined by

ĖGW ∼ D2ḣ2 =
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C. The rate of change of frequency is given by
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√
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D. The Fourier transform of h(t) is given approximately by
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E. The characteristic strain is given by
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√
f 2

ḟ
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F. The energy density of a GW background generated by a population of
these sources is given by

ρcΩGW(f) =

∫ ∞
0

N(z)

1 + z
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dE
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fr=f(1+z)

dz.

For the inspiraling binaries the previous results give

f
dE

df
∼ f

Ė
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ii. The energy of the binary is proportional to 1/a, hence we have
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iii. The previous derivation of the background energy density assumed that all
of the energy loss driving the frequency evolution was due to GW emission.
If there are other processes driving energy loss and hence frequency evo-
lution, the background is suppressed because not all of the orbital energy
lost is emitted as gravitational waves. In general we have f = f(E) and
hence ḟ = (df/dE)Ė and therefore

dEGW

df
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ĖGW

(df/dE)[ĖGW + Ėother]
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(
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)
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The final bracketed expression denotes the background energy density in
the pure GW-driven evolution case. In the case of stellar hardening we
therefore find a modified expression for the GW background energy density
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This can be simplified a bit more — for example, we notice that the factor

µM
2
3 in the hardening term is just M

5
3
c — but the above result is all we

need to answer the next few questions.



iv. If the sources are at a common redshift, z0, we can replace N(z) by a delta
function, δ(z − z0), and do the integral explicitly. It is then clear that we
have

ΩGW(f) ∼ f
2
3

1 + λf−
8
3

where
λ = k(ρm2/σ

3)M− 5
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8
3 .

This is a broken power-law, as required. For f � 1 the term f−
8
3 dom-

inates in the denominator and we have ΩGW ∼ f
10
3 . This is the stellar

hardening dominated regime. For f � 1 the constant term dominates
in the denominator and we find ΩGW ∼ f

2
3 . This is the GW dominated

regime and this is the standard result for GW backgrounds.

v. If a broken power law background were detected, it tells us about the
processes that drive the inspiral of the binary. In this example the power
at low frequencies (where hardening dominates) is suppressed relative to
that of a pure GW background (see Figure 1). The low frequency slope is
characteristic of whatever process drove the early evolution of the binaries
— a measurement of this tells you which physical process was important
at that time. The high frequency slope tells us about the late evolution
of the binary, and in this case the value f

2
3 is consistent with GW-driven

inspiral. The turn over point tells us about the relative efficiencies of
the two processes. In this example it occurs where f ≈ λ

3
8 and so a

measurement of that value tells us about the parameters that go into λ,
such as σ, ρ and the typical source redshift, z0.

vi. (OPTIONAL) No results here. If there is a distribution over masses, then
the background energy density involves an integral over the mass distribu-
tion as well as the redshift. Try playing around with different choices. Try
also including some dependence of ρ and σ on the binary properties. The
GW background in the PTA regime may well be suppressed by stellar pro-
cesses of the type described here. If we see that suppression we will want
to be able to interpret it in the context of models of the binary population.

(b) i. The average waveform power is

〈h2〉 =
1
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We see that beyond
√
QT ∼ few, the waveform is exponentially suppressed.

Hence, the duration of the signal is order ∼ 1/
√
Q. We take |

√
QT | . 2

as a reasonable approximation.
For this choice, we find
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with a pre-factor that is order 0.few.

ii. Using standard results for Fourier transforms, F [g] = g̃(f), including
F [exp(−t2)] =

√
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Figure 1: Example backgrounds. We show ΩGW(f) as a function of frequency for λ = 0.01
(purple), λ = 1 (green) and λ = 100 (red). Also shown, as a dashed red line, is the
background in the absence of stellar hardening.



We can use the fact that the time series is real to wrap onto only positive
frequencies and then we have

h̃(f) =
A

D

√
π

Q
e−

π2

Q
(f−f0)2 .

We see that the Fourier transform is also proportional to a Gaussian which
goes to zero exponentially when π2(f−f0)2/Q ∼few. Hence the bandwidth
is ∆f ∼

√
Q/π.

iii. Using the power ratio formula(
S

N

)2

≈ 〈h2〉
∆fSn(f)

and assuming white noise, Sn(f) = σ2, we have(
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where k is a constant of order unity. This SNR could be achieved by
windowing the data (to the time range |

√
QT | .a few) and bandpassing

it (to the frequency range π|f − f0|/
√
Q .a few) and then comparing the

signal power to the average off-source noise power.

iv. Using the Fourier transform obtained above, the matched filtering SNR is(
S

N
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= 4
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which is also equal to A2/(D2σ2
√
Q) times a constant of order unity.

We have found that the matched filtering SNR is essentially the same as
the burst search SNR, so we are not gaining anything by doing matched
filtering. We argued in lectures that matched filtering gained over a burst
search by a factor of the square root of the number of cycles spent near a
particular frequency. These sine-Gaussian sources are peculiar in that as
Q decreases so that the source spends more time near frequency f0, the
bandwidth also decreases so the burst power is increasingly concentrated —
we effectively have only ‘1 cycle’ in the vicinity of each relevant frequency.
This result does not necessarily mean matched filtering is no better than
a burst search — the SNR does not directly translate to a false alarm
probability. There may be many instrumental artefacts that could give
broadband power in the frequency domain which looks burst like, but
those artefacts would look nothing like the specific sine-Gaussian form of
the matched filter. Nonetheless, this problem illustrates why excess power
searches are quite effective for sources that are burst-like, even if models
are available.

v. The energy distribution can be found from∫
dE

df
df =

∫ ∞
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vi. Assuming the number of objects per unit comoving volume with redshift
between z and z + dz and with f0 between f0 and f0 + df0 is N(z)df0dz,
the background energy density is

ρcΩGW(f) =

∫ ∞
0

∫ ∞
0

N(z)(1+z)2A2f
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vii. The common redshift assumption allows us to replace the integral over z
by evaluation of the integrand at z0 as before. We then have

ρcΩGW(f) = N0(1+z0)2A2 π
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The integral over f0 takes the form∫ ∞
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The exact background computed from this expression is shown in Figure 2,
but we can also find analytic approximations for the low and high frequency
behaviour. If f � 1, then the integral is approximately∫ ∞

0

xα exp
[
−x2

]
dx =

1

2
Γ

(
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2

)
with corrections of order λf . Hence, the dominant behaviour is a constant
and ΩGW(f) ∼ f 3 due to the factor out the front of the expression.
For f � 1 we can make a change of variable in the integral∫ ∞

0

xα exp
[
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]
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So we deduce ΩGW ∼ f 3+α.

viii. (OPTIONAL) No results here again, but things to explore would be how
the introduction of a redshift distribution modifies things, what happens
if the distribution of f0 is changed, e.g., by introducing a cut-off in the
frequency range, what happens if we add a distribution for Q etc.
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Figure 2: Example backgrounds for the burst population model. We show ΩGW(f) as a
function of frequency for λ = 1 and three choices of α: α = −0.75 (purple), α = −0.5
(green) and α = −025 (red).



2. (a) The pymc3 model definition for this problem is

with lin_model:

beta = pm.Normal("beta", mu=mu0, sigma=np.sqrt(var0), shape=2)

tau = pm.Gamma("tau", alpha=a, beta=b)

mu = beta[0] + beta[1] * year

Y_obs = pm.Normal("Y_obs", mu=mu, sigma=1./np.sqrt(tau), observed=jump)

Fitting this model gives the traceplots and posterior distributions shown in
Figure 3. Autocorrelation plots show no evidence of autocorrelation, with
coefficients close to 0 for all lags greater than 0. Summary statistics, ef-
fective number of samples and Gelman-Rubin statistics, computed using the
display(az.summary()) command, are shown in Figure 4.

0 250 500 750 1000 1250 1500 1750 2000
samples

30

20

10

be
ta

0

Trace and Posterior Distribution for beta0

30 25 20 15 10
beta0

0.00

0.05

0.10

de
ns

ity

mean
median
95% CI

0 250 500 750 1000 1250 1500 1750 2000
samples

0.010

0.015

0.020

be
ta

1

Trace and Posterior Distribution for beta1

0.008 0.010 0.012 0.014 0.016 0.018 0.020
beta1

0

100

200

de
ns

ity
mean
median
95% CI

0 250 500 750 1000 1250 1500 1750 2000
samples

10

20

ta
u

Trace and Posterior Distribution for tau

5 10 15 20 25 30
tau

0.00

0.05

0.10

de
ns

ity

mean
median
95% CI

Figure 3: Trace plots and posterior distributions for the linear model fit to the long jump
data, for parameters β0 (top left), β1 (top right) and τ = 1/σ2 (bottom).

Figure 4: Summary table for the linear model fit to the long jump data.

(b) pymc3 is sampling well for this model, although trying the same fit using rjags

gives quite poor sampling. Centring of covariates often helps improve sampling,
while leaving the posterior on the slope of the regression line, which is the key
parameter, unchanged. In this case we do not need to change the pymc3 model,
but just need to change the year data array as follows



year_cent=year-np.mean(year)

Sampling from this model we obtain the summary table shown in Figure 5.
There are a larger number of effective samples in this run, indicating that it is

Figure 5: Summary table for the linear model fit to the centred long jump data.

easier to sample from. The result is consistent, with β̂1 = 0.0141 compared to
β̂1 = 0.0139 in the non-centred case.

(c) The pymc3 model for robust regression with fixed student-t degrees of freedom
is

robust_model = pm.Model()

mu0=0.

var0=1000.

a=0.1

b=0.1

nu=3

with robust_model:

beta = pm.Normal("beta", mu=mu0, sigma=np.sqrt(var0), shape=2)

tau = pm.Gamma("tau", alpha=a, beta=b)

mu = beta[0] + beta[1] * year_cent

Y_obs = pm.StudentT("Y_obs", nu=nu, mu=mu, sigma=1./np.sqrt(tau), observed=jump)

and the summary table from fitting this model with ν = 3 is shown in Figure 6.
The new estimate of the slope coefficient is β̂1 = 0.01394.

Figure 6: Summary table for the robust linear model fit to the centred long jump data,
with fixed degrees of freedom, ν = 3.



To allow the degrees of freedom to vary we use the pymc3 model

robust_model_B = pm.Model()

mu0=0.

var0=1000.

a=0.1

b=0.1

c=0.1

d=0.1

with robust_model_B:

beta = pm.Normal("beta", mu=mu0, sigma=np.sqrt(var0), shape=2)

tau = pm.Gamma("tau", alpha=a, beta=b)

nu = pm.Gamma("nu", alpha=c, beta=d)

mu = beta[0] + beta[1] * year_cent

Y_obs = pm.StudentT("Y_obs", nu=nu, mu=mu, sigma=1./np.sqrt(tau), observed=jump)

and the result table from fitting this model is shown in Figure 7. The new

Figure 7: Summary table for the robust linear model fit to the centred long jump data,
with variable degrees of freedom.

estimate of the slope coefficient is now β̂1 = 0.01394. To fit both of these
latter two models, we used the centred “year” covariate. Inspection of the
data shows that the year 1968 is an outlier. This data point could be removed
from the data before analysing, which makes some difference to the results.
Robust regression is more immune to the presence of the outlier and so favours
somewhat shallower slopes than the first fits.

3. (a) The conjugate prior to a Normal distribution is a Normal distribution. The
expert prior could be interpreted as a uniform distribution on [0, 2], which
has mean 1 and variance 1/3. The Normal distribution with this mean and
variance is N(1, 1/3) and so that is a good choice of prior. It is not the only
choice. Anything of the form N(1, k) with k ∼ 1, e.g., k = 0.5, 1, 2 is OK since
the expert opinion is vague. However a prior with k � 1 or k � 1 would not
respect the expert opinion and a truncated distribution would not be conjugate.
The posterior for a Normal-Normal model with known measurement variance
σ2 and prior N(µ0, σ

2
0) is

N

(
nȳσ2

0 + µ0σ
2

nσ2
0 + σ2

,
σ2σ2

0

nσ2
0 + σ2

)
.

This data has n = 10, σ2 = 30 and ȳ = 1.6116 so for the N(1, 1/3) prior the
posterior is N(1.06, 0.3).



(b) As in part (a) there are several ways to interpret the US expert’s informa-
tion. Following the procedure above the US expert prior can be interpreted as
N(5, 4/3). A suitable mixture prior is of the form p(µ) = wp1(µ)+(1−w)p2(µ)
where p1(µ) and p2(µ) are the prior from the UK and US experts respectively
and w is the weight for prior p1(µ). A suitable choice is w = 2/3 since there
are twice as many UK experts. In this case we have p1(µ) = N(µ1, σ

2
1) and

p2(µ) = N(µ2, σ
2
2). The posterior can be found to be

w′N
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nȳσ2

1 + µ1σ
2

nσ2
1 + σ2

,
σ2σ2

1

nσ2
1 + σ2

)
+ (1− w′)N

(
nȳσ2

2 + µ2σ
2

nσ2
2 + σ2

,
σ2σ2

2

nσ2
2 + σ2

)
, (1)

where

w′ =
k1w

k1w + k2(1− w)
, ki =

1√
σ2 + nσ2

i

exp

[
−1

2

(
n(ȳ − µi)2

σ2 + nσ2
i

)]
. (2)

In this case we find w′ = 0.890 and the posterior is 0.890N(1.06, 0.3)+0.110N(3.95, 0.923).

(c) We need to choose a suitable prior on the precision τ = 1/σ2 and we use
Γ(0.01, 0.01). The pymc3 model definition is as follows

npts=10

y=np.array([-0.566, 3.74, 5.55, -1.90, -3.54, 5.16, -1.76, 4.08, 4.62, 0.732])

# Specify prior hyperparameters

# Mixture prior on linear model coefficients.

mup=np.array([1.,5.0])

taup=np.array([3.0,0.75])

wt=np.array([2./3.,1./3.])

# Prior on precision

a=0.01

b=0.01

# Define pymc3 model

mixture_model = pm.Model()

with mixture_model:

mu = pm.NormalMixture("mu", w=wt, mu=mup, tau=taup)

tau = pm.Gamma("tau", alpha=a, beta=b)

Y_obs = pm.Normal("Y_obs", mu=mu, sigma=1./np.sqrt(tau), observed=y)

The output table after fitting the model is given in Figure ?? and the resulting
posteriors and trace plots are shown in Figure 9. Note that you will not get
exactly these values due to sampling error, but your values should be close to
these.

Figure 8: Summary table for the Normal model fit with the Normal mixture prior.
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Figure 9: Posterior distributions and trace plots for the mean µ (left) and precision
τ = 1/σ2 (right) of the log concentration of the chemical.

(d) The probability that µ < 1 can be found by integrating the posterior for µ from
−∞ to 1. This can be done by computing the fraction of posterior samples
that have mu < 1. We obtain an estimate p = 0.370.

To compute the probability that a single future measurement will yield a neg-
ative log-concentration, we first need to compute p−,1, the posterior predictive
probability of obtaining a negative measurement in a single future observation.
This is accomplished by adding this line to the model definition:

ypred = pm.Normal("ypred",mu=mu,sigma=1./np.sqrt(tau))

and then computing the fraciton of posterior samples with ypred < 0. This
gives p−,1 ≈ 0.359.

The probability that at least one of N future measurements yields a value less
than 0 is one minus the probability that none of them yield a value less than 0
which can be calculated as p−,5 = 1− (1− p−,1)N . For N = 5 and p−,1 = 0.359
we find p−,5 ≈ 0.892.

(e) If we include w as a parameter with a flat prior in the range [0, 1] the posterior
on (µ,w) is given by Eq. (1) above, but with w′ and (1− w′) replaced by

w′ → 2k1w

k1 + k2

, 1− w′ → 2k2(1− w)

k1 + k2

,

with ki as defined in Eq. (2). In this case we find the joint posterior is

1.561wpG(µ; 1.06, 0.3) + 0.439(1− w)pG(µ; 3.95, 0.923),

where pG(x;µ, σ2) denotes the pdf of an N(µ, σ2) distribution.

The marginal distribution on µ is found by integrating over w

p(µ|d) = 0.781pG(µ; 1.06, 0.3) + 0.219pG(µ; 3.95, 0.923).

The marginal distribution on w is found by integrating over µ

p(w|d) = 0.439 + 1.122w.

The marginalisation distribution on µ is the same distribution that would be
obtained using equal weights on the two priors in the mixture, i.e., w = 1/2.
This is because w = 1/2 is the prior expectation value for a U [0, 1] and the w



prior is a hyperprior, i.e., the prior on a parameter that describes a prior on
other parameters. The marginal on w is a straight line. It is rising, meaning
that the mode of the posterior is w = 1, i.e., we favour the prior from the
UK experts. We have weak evidence to suggest the UK experts are better at
predicting than the US experts, but this is perhaps unsurprising given that the
data is being collected in the UK. A straight line posterior does not indicate
a strong constraint on the parameter. This is because the w parameter only
enters once, as a prior on the mean that is common to all the subsequent
observations. As we make more observations we expect to measure µ better
and better, but there will be no strong change in our ability to measure w, since
it only enters once. If we imagine a scenario in which we collect sets of data
in multiple different sites, and we suppose the mean at each site is different,
drawn from the prior described by w, then as we add more and more sites we
would start to see a concentration in the w prior and stronger evidence that
one set of experts is correct.



Additional questions

4. (a) The posterior distribution of the success rate is

p(θ | y) ∝ f(y | θ)p(θ)

=

(
n

y

)
θy(1− θ)n−y 1

B(a, b)
θa−1(1− θ)b−1

∝ θa+y−1(1− θ)b+n−y−1,

which we recognise as the kernel of a beta distribution with parameters a + y
and b+ n− y. Therefore,

θ | y ∼ Beta(a+ y, b+ n− y).

Taking a = 9.2, b = 13.8, n = 20, and y = 15, results in a Beta(24.2, 18.8)
distribution.

(b) The posterior mean is 24.2/(24.2 + 18.8) = 0.563. The HPD interval is
(0.416, 0.708).

(c) By computing the 2.5% and 97.5% percentiles of the posterior distribution,
we obtain the symmetric credible interval (0.414, 0.706). The two intervals
(HPD and credible) are basically the same because in this case the posterior
distribution is unimodal (and also practically symmetric around the mean).

(d) The probability that the true success rate is greater than 0.6 is 0.316.

(e) Under a uniform prior, i.e., with a Beta(1, 1) prior distribution, the above
probability changes to 0.904. With a Jeffreys’ prior, it is 0.918.

(f) Let z denotes the number of positive responses in further m = 40 patients. We
must first calculate the posterior predictive distribution

f(z | y) =
∫

Θ

f(z | θ)p(θ | y)dθ

=

∫ 1

0

(
m

z

)
θz(1− θ)m−z 1

B(a+ y, b+ n− y)
θa+y−1(1− θ)b+n−y−1dθ

=

(
m

z

)
1

B(a+ y, b+ n− y)

∫ 1

0

θa+y+z−1(1− θ)b+n−y+m−z−1dθ

=

(
m

z

)
B(a+ y + z, b+ n− y +m− z)

B(a+ y, b+ n− y)

×
∫ 1

0

1

B(a+ y + z, b+ n− y +m− z)
θa+y+z−1(1− θ)b+n−y+m−z−1dθ

=

(
m

z

)
B(a+ y + z, b+ n− y +m− z)

B(a+ y, b+ n− y)

It is now straightforward to find that Pr(z ≥ 25) = 0.329.

(g) We start by calculating the prior predictive distribution

f(y) =

∫
Θ

f(y | θ)p(θ)dθ

=

∫ 1

0

(
n

y

)
θy(1− θ)n−y 1

B(a, b)
θa−1(1− θ)b−1dθ

=

(
n

y

)
1

B(a, b)

∫ 1

0

θa+y−1(1− θ)b+n−y−1dθ

=

(
n

y

)
B(a+ y, b+ n− y)

B(a, b)



The prior predictive probability of observing at least 15 positive responses can
then be computed from the last expression and it is 0.01526. This suggests
some evidence that the data and the prior are incompatible.

(h) i. Solving for a and b gives a Beta(12, 3) prior.

ii. The mixture prior θ ∼ πBeta(a1, b1) + (1 − π)Beta(a2, b2) is plotted in
Figure 10.
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Figure 10: The mixture prior for question 4(h)(ii).

iii. We will start by finding the posterior distribution of θ.

p(θ | y) ∝
(
n

y

)
θy(1− θ)n−y

{
π

1

B(a1, b1)
θa1−1(1− θ)b1−1 + (1− π) 1

B(a2, b2)
θa2−1(1− θ)b2−1

}
∝ π 1

B(a1, b1)
θa1+y−1(1− θ)b1+n−y−1 + (1− π) 1

B(a2, b2)
θa2+y−1(1− θ)b2+n−y−1

= π
B(a1 + y, b1 + n− y)

B(a1, b1)

1

B(a1 + y, b1 + n− y)
θa1+y−1(1− θ)b1+n−y−1

+ (1− π)B(a2 + y, b2 + n− y)
B(a2, b2)

1

B(a2 + y, b2 + n− y)
θa2+y−1(1− θ)b2+n−y−1

= π
B(a1 + y, b1 + n− y)

B(a1, b1)
Beta(θ | a1 + y, b1 + n− y)

+ (1− π)B(a2 + y, b2 + n− y)
B(a2, b2)

Beta(θ | a2 + y, b2 + n− y).

We are almost there, but note that the ‘weights’ πB(a1+y,b1+n−y)
B(a1,b1)

and (1−
π)B(a2+y,b2+n−y)

B(a2,b2)
do not sum up to one. Renormalising, we finally obtain

that

θ | y ∼ ω1Beta(θ | a1 + y, b1 + n− y) + (1− ω1)Beta(θ | a2 + y, b2 + n− y)



with

ω1 = π
B(a1 + y, b1 + n− y)

B(a1, b1)

(
π
B(a1 + y, b1 + n− y)

B(a1, b1)
+

+(1− π)
B(a2 + y, b2 + n− y)

B(a2, b2)

)−1

We are now ready to compute the required probability, which turns out to
be 0.58062.

iv. The procedure is similar to the one in part (g), the only difference is the
computation of the prior predictive distribution. In this case,

f(y) =

∫
Θ

f(y | θ)p(θ)dθ

=

∫ 1

0

(
n

y

)
θy(1− θ)n−y

{
π

1

B(a1, b1)
θa1−1(1− θ)b1−1

+(1− π) 1

B(a2, b2)
θa2−1(1− θ)b2−1

}
dθ

= π

(
n

y

)
1

B(a1, b1)

∫ 1

0

θa1+y−1(1− θ)b1+n−y−1dθ

+ (1− π)
(
n

y

)
1

B(a2, b2)

∫ 1

0

θa2+y−1(1− θ)b2+n−y−1dθ

= π

(
n

y

)
B(a1 + y, b1 + n− y)

B(a1, b1)
+ (1− π)

(
n

y

)
B(a2 + y, b2 + n− y)

B(a2, b2)

The prior predictive probability of observing at least 15 positive responses
is now 0.0514, which does not provide strong evidence of incompatibility.

v. The prior/likelihood/posterior plot is shown in Figure 11.
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Figure 11: Comparison of prior, likelihood and posterior for question 4(h)(v).


