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Problem Sheet 2: Bayesian Statistics

1. The probability that he chose route i given the observation that the journey took
less than 1 hour is given by Bayes’ Theorem

p(i|T < 1 hr) =
p(T < 1 hr|i)p(i)∑
j p(T < 1 hr|j)p(j)

.

He chooses one of the four routes at random, so pi = 0.25 for i = 1, . . . 4. Hence

p(1|T < 1 hr) =
0.2

0.2 + 0.5 + 0.8 + 0.9
= 0.083

p(2|T < 1 hr) =
0.5

0.2 + 0.5 + 0.8 + 0.9
= 0.208

p(3|T < 1 hr) =
0.6

0.2 + 0.5 + 0.8 + 0.9
= 0.333

p(4|T < 1 hr) =
0.9

0.2 + 0.5 + 0.8 + 0.9
= 0.375.

2. (a) From a simple application of Bayes Theorem, the posterior is

P(H0|x) =
P(x|H0)p0

P(x|H0)p0 + P(x|H1)p1

=
p0

p0 + [P(x|H1)/P(x|H0)]p1

=
p0

p0 + p1/B01

where B01 = P(x|H0)/P(x|H1) is the Bayes factor in favour of H0 over H1.

(b) The likelihood under hypothesis Hi is

P(x|Hi) = (2πσ2)−n/2 exp

[
− 1

2σ2

n∑
j=1

(xj − µi)2

]

= (2πσ2)−n/2 exp

[
− 1

2σ2

(
n∑
j=1

x2
j − 2µi

n∑
j=1

xj + nµ2
i

)]
. (1)

Hence, denoting x̄ =
∑n

j=1 xj/n as usual, we deduce

B01 =
P(x|H0)

P(x|H1)
= exp

[
− n

2σ2

(
−2(µ0 − µ1)x̄+ µ2

0 − µ2
1

)]
= exp

[
− n

2σ2
(µ0 − µ1) (µ0 + µ1 − 2x̄)

]
(2)

as required. Setting µ0 = 0, µ1 = 1, σ2 = 1, n = 9 and x̄ = 0.645 we find

B01 = exp(−4.5× (−1)× (−0.29)) = exp(−1.305) = 0.271.

There is weak evidence against the null hypothesis, with the posterior prob-
ability for H0 given the observed data and equal prior weights on the two
hypotheses, of 21%. As n increases, with all other values fixed, the evidence
against H0 increases. For n ≥ 21 P(H0|x) < 0.05 and so you would reject the
null hypothesis at the 5% level.



(c) We need to recalculate P(x|H1), which is done as follows

P(x|H1) = (2πσ2)−n/2(2πτ 2)−1/2

∫ ∞
−∞

exp

[
− 1

2σ2

n∑
j=1

(xj − µ)2 − 1

2τ 2
µ2

]
dµ

= (2πσ2)−n/2(2πτ 2)−1/2 exp

[
− 1

2σ2

n∑
j=1

x2
j +

n2Σ2x̄2

2σ4

]
×

×
∫ ∞
−∞

exp

[
− 1

2Σ2

(
µ− nΣ2

σ2
x̄

)2
]

dµ

= (2πσ2)−n/2
Σ

τ
exp

[
− 1

2σ2

n∑
j=1

x2
j +

n2Σ2x̄2

2σ4

]
(3)

where Σ−2 = nσ−2 + τ−2. The Bayes factor then becomes

B01 =
τ

Σ
exp

[
− n

2σ2
(µ2

0 − 2µ0x̄)− n2Σ2x̄2

2σ4

]
.

In the limit τ →∞ we have Σ2 → σ2/n and

B01 →
τ

Σ
exp

[
− n

2σ2
(µ0 − x̄)2

]
→∞.

In the limit as τ →∞, there is a lot of prior weight to arbitrarily large means.
Any finite x̄ favours means close to x̄, so for large τ , such means are more
consistent with the null hypothesis than the alternative and we never reject
H0. The moral is — don’t be too generic in your prior specification!

3. (a) The posterior takes the form

p(p|x) ∝ p(x|p)p(p) ∝
m∏
i=1

pxii

m∏
j=1

p
αj−1
j ∝

m∏
i=1

pαi+xi−1
i

and we deduce p(p|x) ∼Dir(α1 + x1, α2 + x2, . . . , αm + xm).

(b) We showed in the lecture notes that the Bayes estimator with a quadratic error
loss is the posterior mean. For the Dirichlet distribution this is αi/

∑
j αj and

so in this case the Bayes estimate for the parameters is

p̂i =
αi + xi

N +
∑m

j=1 αj
.

(c) The posterior means, and hence Bayes estimate with quadratic loss, are

p̂1 =
11

66
=

1

6
= 0.167, p̂2 =

13

66
= 0.197, p̂3 =

13

66
= 0.197,

p̂4 =
9

66
= 0.136, p̂5 =

8

66
= 0.121, p̂6 =

12

66
= 0.182. (4)

4. The cumulative density function of the Pareto distribution can be found to be

P (θ ≤ Θ) =

∫ Θ

x0

axa0
θa+1

dθ =

{
1−

(
x0
Θ

)a
for Θ ≥ x0

0 otherwise
.



The CDF follows a U [0, 1] distribution and the inverse CDF is

F−1(u) =
x0

(1− u)
1
a

.

Hence we can draw samples from the Pareto distribution by simulating ui U [0, 1]
and then computing θi = F−1(ui).

5. (a) The posterior is

p(φ|x) ∝ p(x|φ)p(φ) ∝ φα−1(1− φ)β−1

T+1∏
t=1

pxtt

= φα−1(1− φ)β−1(1− φ)
∑T

t=1 xtφ
∑T+1

t=2 (t−1)xt

= φα−1+
∑T+1

t=1 (t−1)xt(1− φ)β−1+
∑T

t=1 xt (5)

which is the kernel of a Beta(α +
∑T+1

t=1 (t− 1)xt, β +
∑T

t=1 xt) distribution.

(b) The mode of a Beta(a, b) distribution is at x = (a − 1)/(a + b − 2) (provided
a > 1 and b > 1, but if either of these conditions is violated it is not possible
to use rejection sampling from a uniform distribution to obtain samples from
Beta(a, b)). Hence, if we define

A =
(a− 1)a−1(b− 1)b−1

(a+ b− 2)a+b−2

we can generate samples from the Beta(a, b) distribution using the following
simple rejection sampling algorithm

i. Draw u1 ∼ U [0, 1] and u2 ∼ U [0, A].

ii. If
u2 ≤ ua−1

1 (1− u1)b−1

then set xi = u1 and increment i→ i+ 1. Otherwise return to step i.

(c) The 95% HPD interval has width of 0.117, while the 95% symmetric credible
interval has width of 0.111. Since the Beta distribution is unimodal the HPD
interval must be the shortest 95% interval and therefore something is wrong in
these results. Checking the quoted values using the properties of the Beta(91,9)
distribution we find that everything is correct except the HPD interval. The
pdf at the two ends of this interval is not equal, so it can’t be HPD, and the
probability contained is 92.4% so it is not even a 95% interval. The true HPD
interval is (0.853, 0.962).

6. (a) The acceptance probability for a move from x to y is

α(x, y) = min

(
1,
q(y, x)π(y)

q(x, y)π(x)

)
where q(x, y) is the probability that a move from x to y would be proposed by
the chosen proposal distribution. In this case we have

π(x) =
1√
2π σ

exp

[
− x2

2σ2

]



and

q(x, y) =
1√
2π τ

exp

[
−(y − ax)2

2τ 2

]
.

Therefore we have

α(x, y) = min

(
1,
q(y, x)π(y)

q(x, y)π(x)

)
= min

(
1, exp

[
(x2 − y2)

2σ2
+

[(y − ax)2 − (x− ay)2

2τ 2

])
= min

(
1, exp

[
(x2 − y2)

(
1

2σ2
+

(a2 − 1)

2τ 2

)])
. (6)

(b) The condition that the acceptance probability α(x, y) = 1 for all x, y is that
the argument of the exponential is 0, i.e.,

1

σ2
+

(a2 − 1)

τ 2
= 0, ⇒ τ 2 = σ2(1− a2).

(c) If a = 0 then the proposal distribution, q(x, y), is independent of the current
point, x, so this describes an independence sampler. Additionally setting τ = σ
the acceptance probability is again always 1, but in this case we are proposing
samples directly from the posterior and so we don’t need to use MCMC.

7. We denote the observed data in frequency bin i by si. The full data set, denoted
D, takes the form

si = ni ∀ i ∈ [1, N ], sN+1 = nN+1 + A, ni ∼ N(0, σ) ∀ i (7)

with corresponding likelihood

p(D|σ,A) ∝ 1

σN+1

(
N∏
i=1

exp

[
− s2

i

2σ2

])
exp

[
−(sN+1 − A)2

2σ2

]
. (8)

For flat priors, this is also the posterior, p(σ,A|D). We are not so interested in the
value of σ, but the value of A, so we can marginalise the posterior over σ. If we
write

X(A) = (sN+1 − A)2 +
N∑
i=1

s2
i (9)

then we find

p(A|D) ∝ 1

σN+1
exp

(
−X(A)/2σ2

)
⇒
∫ ∞

0

p(σ,A|D)dσ ∝
(

2

X(A)

)N
2

Γ

(
N

2

)
where Γ(x) is the gamma function, with Γ(n+ 1) = n!. Note that we are assuming
a flat prior in σ here, but other priors could be included straightforwardly.

We now recall that the posterior density for the student-t distribution with n degrees
of freedom is

pt,n(x) =
Γ
(
n+1

2

)
√
nπ Γ

(
n
2

) (1 +
x2

n

)−n+1
2

.



Hence we see that

p(A|D) ∝ pt,N−1

 A− sN+1√
1

N−1

∑N
i=1 s

2
i

 = pt,N−1

(
A− sN+1

σ̂

)

where σ̂ =
√∑

s2
i /(N − 1) is the usual unbiased estimate of the variance. We can

compare this to the standard likelihood used in parameter estimation for gravita-
tional wave detectors, which is

p(A|D) ∝ pN(0,1)

(
A− sN+1

σ̂

)
where

pN(0,1)(x) =
1√
2π

exp

[
−x

2

2

]
is the pdf of a standard Normal distribution. We see that this marginalisation over
the PSD uncertainty is equivalent to replacing the Normal distribution by a student-
t distribution. This is the same procedure that we argued could be used for robust
regression.

If we take the limit that N →∞ and write
∑N

i=1 s
2
i = Nσ2

est we find

X(A)−
N
2 =

(
1

Nσ2
est

)N
2
(

1 +
(sN+1 − A)2

2(N/2)σ2
est

)−N
2

≈ B exp

(
−(sN+1 − A)2

2σ2
est

)
(10)

where the last part follows from the standard result(
1 +

k

n

)n
∼ ek as n→∞ (11)

For large N we also expect σ2
est = σ2 + O(1/N) and so we recover the standard

Normal likelihood.

8. (a) The information available before O1 indicates that the rate is uncertain over
orders of magnitude. Under these circumstances it is reasonable to suppose
that the the log of the rate is uniform in some range. So, we represent the
prior as

log10(λ) ∼ U [−2, 3].

This prior has an expectation value of 999.99/ ln(105) = 86.858 and variance
of 999999.9999/2 ln(105) − 86.862 = 35885.13. The conjugate distribution to
a Poisson model is a Gamma distribution, Γ(a, b), for which the mean and
variance are a/b and a/b2 respectively. Matching the mean and variance we
find b = 1/413.15 and a = 0.210. We use a conjugate distribution since
we then know the posterior will also be in the conjugate family and so it
is computationally convenient. [Note: any reasonable prior choice is fine,
provided it is justified. It must be wide and flat over several decades and make
some use of the prior information.]

(b) We note first that all of the observation runs are different lengths. The rate λ
was quoted in units of yr−1. Poisson processes are additive, i.e., if the rate in
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Figure 1: Posterior distribution for the rate per year, λ, after observing the O1 data for
the conjugate prior (black line) and the Jeffrey’s prior (red line).

time period T is λ, the rate in time period kT is λ̃ = kλ. If the prior on λ is
Γ(a, b) then we have

p(λ̃) = k−1 ba

Γ(a)

(
λ̃

k

)a−1

e−bλ̃/k =
(b/k)a

Γ(a)
λ̃a−1e−(b/k)λ̃,

i.e., the prior on kλ is Γ(a, b/k). As three events are observed in O1, we can
write down the posterior distribution on λ̃ as Γ(a+ 3, b/k + 1) and the poste-
rior distribution on λ is Γ(a+ 3, b+ k). In this case using the conjugate prior
derived above we have Γ(3.21, 0.252). The posterior mean and standard devi-
ation are 12.717 and 7.098 respectively, a 95% symmetric confidence interval
is (2.817, 29.934) and the posterior distribution is shown in Figure 1.

(c) The probability that the rate exceeds 15 can be computed from the cumu-
lative density function of the gamma distribution. This is γ(α, βx)/Γ(α),
where γ(α, x) is the incomplete gamma function. In this case we need 1 −
γ(3.21, 3.78)/Γ(3.21) = 0.312.

(d) The Jeffrey’s prior for the Poisson distribution is the improper prior p(λ) ∝
λ−1/2. This can be approximated by a Γ(1/2, β) distribution with β → 0. The
posterior on λ from the O1 data with the Jeffrey’s prior is therefore Γ(3.5, 0.25).
The posterior is shown as a red line in Figure 1, the posterior mean and stan-
dard deviation are 14 and 7.48 and a 95% symmetric confidence interval is given
by (3.38, 32.0). The probability that the rate exceeds 15 is now 0.379. So, the
results change a little bit and in particular the Jefffrey’s prior favours slightly
higher rates than the conjugate prior, but there is not a very big difference
between the two.

(e) The second science run, O2, lasts 6 months, so the Poisson rate is 0.5λ. The
posterior for O1 therefore gives a prior on the rate in O2 of Γ(3.21, 0.504)



using the conjugate prior. For a posterior of the form Γ(α, β), the posterior
predictive probability of seeing n events in O2 is therefore

p(n|dO1) =

∫ ∞
0

λne−λ

n!

βαλα−1e−βλ

Γ(α)
dλ =

1

n!

βα

(β + 1)α+n

Γ(α + n)

Γ(α)
. (12)

This can be recognised as a negative binomial distribution. We compute the
probability of seeing 6 or more events in O2 as 1 −

∑5
n=0 p(n|dO1) = 0.504.

The posterior for the rate in the first 5 months of O2 is Γ(3.21, 0.608) and
the probability of seeing 1 or fewer events in 5 months is given by computing
p(0|dO1) + p(1|dO1) = 0.131 using this α and β in Eq. (12). The posterior
probability for the rate in 1 month is Γ(3.21, 3.024), from which we compute
the probability of seeing 5 or more events in one month of O2 as p1 = 1 −∑4

n=0 p(n|dO1) = 0.015. The probability of seeing 5 or more events in at least
one month of O2 is given by 1 − (1 − p1)6 = 0.086. With the Jeffrey’s prior
the posterior distributions on the rate in 6 months, 5 months and 1 month
are Γ(3.5, 0.5), Γ(3.5, 0.6) and Γ(3.5, 3.0) respectively. The probabilities of
seeing 6 or more events in O2, 1 or fewer in 5 months of O2, 5 or more in the
last month of O2 and seeing 5 or more in at least 1 month of O2 are 0.564,
0.103, 0.019 and 0.110 respectively. The probability that the last month would
contain the number of events that were seen is significantly small (at a 2%
confidence level). However, there is no reason to single out the last month a
priori and the probability that one month would be at least this exceptional is
only around 10%, which is small but not sufficiently significant to be a cause
for concern. The choice of prior does not significantly influence this, indicating
that we are data dominated and the conclusion is robust. So, based on O2 we
cannot conclude the rate is inhomogeneous in time, but the significance is high
enough that we should collect more data and see if the next science run shows
any evidence for a time-dependent rate.

(f) In total over O1 and O2 we see 9 events and the total observing time is 0.75
years. Therefore the combined posterior is Γ(9.21, 0.752) using the conjugate
prior derived in (a) or Γ(9.5, 0.75) using the Jeffrey’s prior. The posterior pre-
dictive distribution for the rate in a given 6 month period of O3 is Γ(9.21, 1.504)
or Γ(9.5, 1.5) respectively. The distribution of the difference r = |n1 − n2| of
the number of events observed in two independent samples from a Poisson
distribution with rate θ is given by the Skellam distribution with pmf

p(r|θ) =

{
e−2θI0(2θ) r = 0
2e−2θIr(2θ) r = 1, 2 . . . ,

where Ik(x) is the modified Bessel function of the first kind. Hence the posterior
predictive distribution on r is

p(r|d1+2) =

∫ ∞
0

e−2λIr(2λ)
βαλα−1e−βλ

Γ(α)
dλ

for a Γ(α, β) posterior distribution on the rate. Note that this can also be
written as the difference between two independent negative binomial variables,
which follow a generalised discrete Laplace distribution, but the expressions
that must be evaluated are no easier than this integral.



R p(r = R|d1+2) p(r ≤ R|d1+2) R p(r = R|d1+2) p(r ≤ R|d1+2)
0 0.123 0.123 6 0.048 0.935
1 0.229 0.352 7 0.029 0.965
2 0.194 0.546 8 0.018 0.983
3 0.158 0.704 9 0.009 0.992
4 0.109 0.813 10 0.003 0.995
5 0.075 0.888 11 0.002 0.997

Table 1: Posterior predictive probability of the absolute difference in the number of events
detected in the first and second 6 month periods of the O3 science run. The columns give
the difference in the number of events, the posterior probability of observing that difference
and the cumulative posterior probability of observing a difference less than or equal to
that value.

Table 1 lists the cumulative posterior density for the difference r. We see that
there is less than 5% probability of seeing a difference of 7 or more events.
Therefore a difference of this size or larger would be significant at a 5% level.

The observed difference in the number of events, 4, is below this threshold
and so we conclude that O3 did not give any evidence for the rate varying with
time. This value would be significant at the 20% level, but not at 15%. In
fact, the result is even less significant, because the sensitivity of the detectors
increased and the rate of observed events thus went up by a factor of 4−5 from
∼ 1 per month to ∼ 1 per week. The above analysis assumed that the rate was
the same in O3 as in O1 and O2. The observed value of 4 is equivalent to a
difference of about 1 in the previous calculation, so it is not at all significant.

There are a number of other ways in which this question could be ad-
dressed. For example, we could look at the number of events in each month and
set a threshold, based on the posterior predictive distribution, on the differ-
ence between the largest and smallest monthly count. Alternatively, we could
model the rates in each one month period as being potentially different, with
λi denoting the rate in month i. These rates can be connected by a hyperprior,
e.g., λi ∼ Γ(α, β), and the parameters of that hyperprior constrained from the
data. Alternatively, the rates can be modelled parametrically, e.g., λi = a+ bi,
and the parameters of the parametric model constrained from the data. If the
posterior on the slope parameter, b, is inconsistent with 0 there is evidence for
an evolving rate. Similarly if the parameters of the hyperprior are inconsistent
with a constant rate there is evidence for evolution. The advantage of these
kind of approaches is that the results of the analysis give an estimate of the
nature and size of the effect, not just the presence of the effect.



Additional questions

9. (a) The log-likelihood is

l(µ|x, σ) = − 1

2σ2

n∑
i=1

(xi − µ)2 − n

2
ln(2πσ2).

The second derivative of the log-likelihood with respect to µ is therefore

∂2l

∂µ2
= − n

σ2

and the Fisher matrix is

Iµ = −E
[
∂2l

∂µ2

]
=

n

σ2
∝ 1

hence the Jeffreys prior, p(µ) ∝
√
Iµ ∝ 1, as required.

(b) The posterior distribution, using the Jeffreys prior is

p(µ|x) ∝ exp

[
− 1

2σ2

n∑
j=1

(xi − µ)2

]

∝ exp

− n

2σ2

(
µ− 1

n

n∑
i=1

xi

)2
 (13)

where we have dropped factors that are independent of µ. The µ-dependence
in the above is the µ dependence of a Normal distribution and so we deduce

p(µ|x) ∼ N

(
1

n

n∑
i=1

xi,
σ2

n

)
.

(c) Using the previous result, the posterior is N(10.1, 0.1). A 95% HPD confidence
interval is

[10.1− 1.96
√

0.1, 10.1 + 1.96
√

0.1] = [9.480, 10.720]

as required.

10. (a) The posterior distribution is proportional to

p(θ|x) ∝
{

aXa

θa+n+1 for θ ≥ X
0 otherwise

where X = max{x0, x1, . . . , xn}. Hence, the posterior is a Pareto distribution
with parameters A = a+ n and X.

(b) Based on this observed data the posterior is a Pareto distribution with param-
eters a = 5 and x0 = 17. The posterior mean is 21.25, compared to the prior
mean of 0.2. The posterior median is 19.53 compared to the prior median of
1.414. The posterior variance is ax2

0/((a− 1)2(a− 2)) = 30.1 compared to the
prior variance which is divergent.



(c) This prior is incompatible with the observed data, since it implies θ ≤ 15 and
therefore no data values should be observed with x ≥ 15. The observation
x3 = 17 violates this condition. Observing this data would tell the chemist
that they were too restrictive in their prior specification and so they should
revise it.

11. (a) We have

p(σ) =

{
1
T

for 0 ≤ σ ≤ T
0 otherwise

.

Under a change of variables to S = S(σ) we must have

p(S) dS = p(σ) dσ, ⇒ p(S) = p(σ(S))
dσ

dS
.

In this case S = σ2 and we deduce

p(σ2) =

{
1

2Tσ
for 0 ≤ σ2 ≤ T 2

0 otherwise
.

(b) If we assume σ2 is fixed, then this is a standard Normal-Normal model and so
using results from the lecture notes, we deduce

p(µ|x, σ2) ∼ N

(
s2
∑n

i=1 xi
ns2 + σ2

,
σ2s2

ns2 + σ2

)
.

If µ is fixed, the posterior on σ2 is

p(σ2|x, µ) ∝ σ−(n+1) exp

[
− 1

2σ2

n∑
i=1

(xi − µ)2

]
I[0 ≤ σ2 ≤ T 2]

⇒ p(σ2|x, µ) =
A

n−1
2

Γ
(
n−1

2

)
− Γ

(
1
T 2 ; n−1

2

)σ−(n+1) exp

[
− 1

2σ2

n∑
i=1

(xi − µ)2

]
× I[0 ≤ σ2 ≤ T 2] (14)

where

A =
1

2

n∑
i=1

(xi − µ)2, Γ(x;n) =

∫ x

0

xn−1e−x dx

is the incomplete Gamma function, and Γ(n) = Γ(∞;n) is the complete
Gamma function. This is a truncated inverse-Gamma distribution (i.e., τ =
1/σ2 follows a Gamma distribution). In the limit T → ∞ the distribution is
no longer truncated and we deduce

p(τ |x, µ) ∼ Gamma

(
n

2
− 1

2
,
1

2

n∑
i=1

(xi − µ)2

)

as in lecture notes.

12. The posterior on (φ1, φa) is

p(φ1, φa|x) ∝
T∏
i=1

pxii = (1− φ1)x1φ
∑T+1

t=2 xt
1 (1− φa)

∑T
t=2 xtφ

∑T+1
j=3 (t−2)xt

a .



The conditional distributions can thus be seen to be

φ1|φa,x ∼ Beta

(
1 +

T+1∑
t=2

xt, 1 + x1

)

φa|φ1,x ∼ Beta

(
1 +

T+1∑
j=3

(t− 2)xt, 1 +
T∑
t=2

xt

)
(15)

A Gibbs sampling algorithm would work as follows

(a) Draw initial parameter values, (φ0
1, φ

0
a), e.g., from the prior U [0, 1].

(b) At step i = 1, . . . , N :

• Draw

φi1 ∼ Beta

(
1 +

T+1∑
t=2

xt, 1 + x1

)
• Draw

φia ∼ Beta

(
1 +

T+1∑
j=3

(t− 2)xt, 1 +
T∑
t=2

xt

)
• Increment i→ i+ 1.

(c) Discard the first M samples as burn-in. The remaining N −M samples are a
sample from the posterior.

The algorithm we have described is a standard Gibbs sampling algorithm. However,
in this case the conditional distribution of φ1 does not depend on φa and vice-versa.
Thus we can draw samples directly from the posterior and there is no need to do
MCMC. The Gibbs sampling algorithm above is providing direct samples from the
posterior for all iterations i ≥ 1.

13. The Markov chain is reversible if there exists a distribution π(x) such that

π(x)K(x, y) = π(y)K(y, x)

where K(x, y) is the probability of moving from point x to point y. For a Markov
Chain constructed by the Metropolis-Hastings algorithm we haveK(x, y) = q(x, y)α(x, y)
using the notation of question (6). Therefore

π(x)K(x, y) = π(x)q(x, y) min

(
π(y)q(y, x)

π(x)q(x, y)
, 1

)
= min (π(y)q(y, x), π(x)q(x, y))

= min

(
1,
π(x)q(x, y)

π(y)q(y, x)

)
π(y)q(y, x) = K(y, x)π(y). (16)

As required. Integrating this equation we find∫
π(x)K(x, y)dx =

∫
π(y)K(y, x)dx = π(y)

∫
K(y, x)dx = π(y) (17)

as required. The last equality follows from the fact that K(y, x) is a probability
distribution over x and therefore must integrate to 1.


