Lecture Recording

Note: These lectures will be recorded and posted onto the IMPRS website

Dear participants,

We will record all lectures on “Making sense of data: introduction to statistics for
gravitational wave astronomy”, including possible Q&A after the presentation,
and we will make the recordings publicly available on the IMPRS lecture
website at:

- https: / /imprs-gw-lectures.aei.mpg.de /2021-making-sense-of-data /

By participating in this Zoom meeting, you are giving your explicit consent to
the recording of the lecture and the publication of the recording on the course
website.


https://imprs-gw-lectures.aei.mpg.de/2021-making-sense-of-data/

Software for practical session

+ Tomorrow’s class will be a practical session. Please update the conda
installation for the previous practicals to include:

* pytorch
e Jalsimulation

e corner (for plotting)



Making sense of data: introduction to
statistics for gravitational-wave astronomy

Lecture 11: Applications of Machine
Learning to Gravitational Waves

AEI IMPRS Lecture Course
Stephen Green stephen.green@aei.mpg.de
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Introduction

» Many applications so far of machine learning to gravitational waves:

* i searches, parameter estimation, waveform modeling, glitch classification,

population inference, noise reduction, ...
(somewhat biased presentation)

» Objectives of these applications:
* Usually speed of calculations

* Increasingly (and I believe in the future) previously-intractable analyses



Searches

» George and Huerta (2017), Gabbard et al (2018), Gebhard et al (2019), ...

# Approach is to train a classifier to distinguish signal + noise vs noise only.

+ Dataset:

e time domaindata, 7=1 s,f, = 8192 Hz

e 5% 10° samples; half with signal, half without; whitened

« IMRPhenomD, 5 M, < m;, <95 M, zero spin, 0.65 s <7, < 0.85 s
+ Probability model: 2 softmax outputs representing p(y =i|x)

* Loss: Binary cross-entropy f(6) = —» log(65) — ) _log(6¥)

1SN IEN



Searches

+ 1D convolutional architecture captures time-translation invariance of the data

TABLE I. The optimized network consisting of six convolutional layers (C), followed by three hidden layers (H). Max pooling is
performed on the first, fifth, and eighth layer, whereas dropout is only performed on the two hidden layers. Each layer uses an
exponential linear unit (Elu) activation function (with range [—1, oo]) while the last layer uses a Softmax (SMax) activation function in
order to normalize the output values to be between 0 and 1 so as to give a probability value for each class.

Layer
Parameter (Option) 1 2 3 4 5 6 7 8 9
Type C C C C C C H H H
No. Neurons 8 8 16 16 32 32 64 64 2
Filter size 64 32 32 16 16 16 Not applicable Not applicable Not applicable
Max pool size Not applicable 8 Not applicable 6 Not applicable 4 Not applicable Not applicable Not applicable
Drop out 0 0 0 0 0 0 0.5 0.5 0

Activation function Elu Elu Elu Elu Elu Elu Elu Elu SMax
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FIG. 2. The ROC curves for test data sets containing signals
with optimal SNR, p. =2, 4, 6. We plot the true alarm

probability versus the false alarm probability estimated from
the output of the CNN (purple) and matched-filtering (cyan)
approaches. Uncertainties in the true alarm probability corre-
spond to 1-o bounds assuming a binomial distribution.



Other search approaches

+ Gebhard et al (2019) used dilated convolutions for longer data sets.
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Other search approaches

+ Jadhav et al (2021) used transfer learning with InceptionV3 network
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Parameter estimation

+ George and Huerta (2018): point estimate

+ Gabbard et al (2019): variational autoencoder

# Chua and Vallisneri (2020): Gaussian with learned covariance, histogram

* Dax et al (2021): normalizing flow

R

method to build very
complicated distributions



Normalizing flow

+ A normalizing flow f, : u — 0 defines a complex distribution in terms of
a simple one

A/((Ll/)-\

q@1d) = ¥/ (0,1)P(f;'(0)) |det ij




* Requirements:

Normalizing flow

q01d) = ¥(0,D)"(f;'(0))

1. Invertible

2. Simple Jacobian determinant

« Parametrize f, using neural network.

det J:!
d

AK- needed for computing

cross-entropy loss




Normalizing flow

+ Requirements:

1. Invertible J

2. Simple Jacobian determinant / det Jy, = H i (WBULgad)

» Use a sequence of “coupling transforms”:

{Ui Wi oD /2 Hold fixed half of the components

& (ui; W d) ife>D / 2 Transform remaining components element-wise,
£ conditional on other half and s.

= ¢; should be differentiable and have analytic inverse with respect to u..



Normalizing flow

» Spline flow

(Durkan et al, 2019)
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Figure: Durkan et al (2019)



Normalizing flow

Sequence of flows can give very complicated distribution

Training data Flow density Flow samples

Image: Durkan et al (2019)



Training

5 x 10° training waveforms

IMRPhenomPv2
T = 8§ S, fmin =) HZ, fmax

15D parameter space

my,m, € [10,80] Mg

= 1024 Hz

+ stationary Gaussian noise realizations
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Train several neural networks based on different noise level / number of detectors/

distance range:

Observing run  Detectors Distance range [Mpc]
01 L 100, 2000
100, 2000
02 = 100, 6000
ALV 100, 1000

600
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Method validation

Uncertainty estimates allow
for consistency checks

+ “within-distribution”

On individual events,
compate posteriors against
standard tools.

« “out-of-distribution”
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Amortized inference

+ Account for detector nonstationarity
from event to event by conditioning on
noise PSD
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Simulation-based inference

* These machine-learning methods are all examples of simulation-based
inference, which simply means that training uses simulated data (noisy
waveforms).

 Standard inference methods (e.g., MCMC) are likelihood-based.

 Simulation-based inference is applicable in situations where
likelihoods are unavailable or too expensive.

 Because of this, machine learning can carry out analyses that are not
possible using standard tools. E.g., non-Gaussian detector noise.



Wavelorm modeling

» Chua, Galley, Vallisneri (2019): Reduced Order Modeling with Artificial
Neurons (ROMAN)

» Expand waveforms in reduced basis ( ~ 10 elements) and interpolate with
neural network

h(0) = Z<h(‘9)|€i>€i = Zai(g)ei = a(0)

+ Training data: 6 X 10° pairs {6, a(0,)}

+ Loss function: (la — al?)
L := \/A—z Engineered to give more weight
<|a‘ > N i to later basis elements

* Fully-connected network: 25 hidden layers x 256 units




Symmetric mass ratio n

Wavelorm modeling

Initial work: TaylorF2; four parameters 0 = (m, m,, ¥, x>)
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FIG. 2. Top: Plot of accuracy A as a function of (M, ) for test
set (inside red border) and for 3000 training examples with
(M., n) outside the domain of interest. Inset: Histogram of test-
set accuracy values with tenth percentile (dashed line) and
median (solid line) indicated. Bottom: Visualization of typical

+ Automatic differentiation enables
gradient-based sampling methods
(e.g., Hamiltonian Monte Carlo)



Wavelorm modeling

M= 0.0003
* More recent work (S. Khan and R.
Green, 2021) uses similar techniques osl
applied to SEOBNRv4. < ool
054
*+ Fit to amplitude and phase |
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3 8 —05 00 05 :
CPU GPU Speed-up X
Total Time (ms) Time Per Total Time (ms) Time Per (CPU/GPU)
Waveform (ms) Waveform (ms)
Single 2.7 2.7 0.4 0.4 7
Batched (10) 13 1.3 0.5 0.05 26
Batched (10%) 73.3 0.73 2.1 0.021 35
Batched (10%) 575.4 0.58 16.98 0.017 34
Batched (10%) 5010 0.50 163.4 0.016 31
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Machine learning for Gravity Spy: Glitch classification and

dataset

S. Bahaadini®* V. Noroozi® N. Rohani? S. Coughlin®d, M. Zevin®9, ]J.R. Smith¢,

V. Kalogera“d, A. Katsaggelos?

Class Total # train set # valid set # test set Duration Frequency Evolving
1080Lines 328 230 49 49 Long High No
1400Ripples 232 162 35 35 Short High No
Air Compressor 58 41 8 9 Short Low No
Blip 1869 1308 281 280 Short Mid Yes
Chirp 66 46 10 10 Short Mid, Low Yes
Extremely Loud 454 318 68 68 Long High, Mid, Low Yes
Helix 279 195 42 42 Short Mid Yes
Koi Fish 830 581 125 124 Short Mid, Low Yes
Light Modulation 573 401 86 86 Long Mid, Low Yes
Low Frequency Burst 657 460 99 98 Short Low Yes
Low Frequency Lines 453 317 68 68 Long Low No
No Glitch 181 127 27 27 Long - No
None of the Above 88 62 13 13 Short High, Mid, Low Yes
Paired Doves 27 19 4 4 Short Mid, Low Yes
Power Line 453 317 68 68 Short Low No
Repeating Blips 285 200 69 42 Short Mid No
Scattered Light 459 321 69 69 Long Low Yes
Scratchy 354 248 53 53 Long High, Mid Yes
Tomte 116 81 17 18 Short Low Yes
Violin Mode 472 330 71 71 Short High No
Wandering Line 44 31 6 7 Long High Yes
Whistle 305 213 46 46 Short High Yes
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Summary

* Presented a sample of applications of machine learning for gravitational
waves:

» Search, parameter estimation, waveform modeling glitch classification
» Frequent new papers on arxiv

“ Next class: practical session!



