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Part II: Bayesian Statistics

5 Bayesian Theory

As we have seen, in frequentist statistics statements are made with reference to repetitions of
the same experiment with parameters fixed. In Bayesian statistics, parameters are no longer
regarded as fixed, but are themselves random variables. The probability distribution of the
parameter values before taking data, the prior distribution, is updated to a probability
distribution after taking data, the posterior distribution, through the likelihood of the
observed data. This update is achieved through Bayes’ Theorem. Bayesian inference
attempts to say as much as possible about the unknown parameter distribution based on the
observed data only, without reference to future repetitions of the same experiment. Bayesian
posteriors are probability distributions on the unknown parameter and can be interpreted
and manipulated in that way, as statements about the relative probability that the parameter
takes different values.

The derivation of Bayes’ theorem is a mathematical result that follows from the definition
of conditional probability, as we will see below, but it is how this result is applied to interpret
data, and the philosophical distinction in the interpretation of the parameter values that
distinguishes the frequentist and Bayesian approach. Typically, in any given observation,
the actual parameter values that led to the generation of the observed data are fixed, not
random, but the Bayesian interpretation is that you can never by sure of what the unknown
parameter is, and so it is appropriate to consider it to be a random variable. In many cases
you will not be able to repeat a particular experiment. Gravitational wave observations are
a good example of this — we cannot choose what events occur in the Universe, so every
observed event is a unique, non-repeatable, experiment. In such contexts, the frequentist
approach of referencing theoretical repetitions cannot really be seen as representative of
reality. In cases where it is possible to repeat an experiment with the unknown parameters
fixed, the Bayesian posterior converges to the true parameter value asymptotically and so
can still be used to represent the current level of uncertainty in the parameter.

Frequentist concepts such as significance and hypothesis testing have been incorporated
into the Bayesian framework, but the interpretation in the latter context is not always clean.
It is therefore useful to have familiarity with both sets of tools to be fully quipped to handle
any kind of data analysis problem.

5.1 Conditional probability

It is often the case that a process generates more than one potentially measurable random
output, but only a subset of these are measurable. If the variables are independent then
measuring one would not provide any information about the others, but when there are
inter-dependencies the observation of a random variable can provide information about other
variables with which it is correlated. For example, suppose we have a bag containing 100
balsa, of which 10 are red and stripy, 20 are blue and stripy, 30 are red and spotted and
40 are blue and spotted. In total there are 30 stripy balls out of the 100 and therefore
the probability that a randomly chosen ball is stripy is 3/10. However, out of the 40 red
balls there are only 10 that are stripy, and so if we have observed that the ball is red the
probability that it is also stripy is now 1/4.
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The conditional probability of an event A, given some other event B is defined as

p(A|B) =
p(A ∩B)

B
.

In other words, this is the fraction that both A and B occur, our of all the times that B
occurs. This can be rewritten in two different ways by interchanging A and B

p(A ∩B) = p(A|B)p(B) = p(B|A)p(A).

Rearranging this identity we obtain Bayes’ Theorem

p(A|B) =
p(B|A)p(A)

p(B)
.

5.2 Bayesian inference

Bayes’ Theorem is a mathematical identity, but it becomes philosophically distinct from
frequentist approaches when it is applied to inference. In Bayesian inference, the event A
is taken to be an observation of data, x, and the event B is taken to be the value of some
unknown parameters, ~θ, characterising the system being observed. Bayes’ Theorem becomes

p(~θ|x) =
p(x|~θ)p(~θ)
p(x)

.

In this context p(x|~θ) is the likelihood (the same function of data and parameters as in the

frequentist case), p(~θ) is the prior distribution of source parameter values, p(~θ|x) is the
posterior distribution on the source parameter values and p(x) is the evidence for the
model under consideration. In a parameter estimation context, the evidence, which does not
depend on parameter values, is a normalisation constant that can be ignored. However, it
plays an important role in Bayesian hypothesis testing, which will be discussed in section 5.6.

Example: Medical testing We suppose that a medical test for a disease is 95% effective
but has a 1% false alarm rate and the prevalence of the disease in the population is 0.5%.
You test positive for the disease. What is the probability you do in fact have it?

The term “95% effective” means that if you have the disease the test gives a positive
result 95% of the time. The term 1% false alarm rate means that if you do not have the
disease you test positive 1% of the time. We can now apply Bayes theorem with data x =
‘positive test’ and parameter θ =‘disease status’ taking values ‘infected’ or ‘not infected’.
The likelihood is

p(positive|infected) = 0.95, p(positive|not infected) = 0.01.

The prior is based on the known prevalence in the population

p(infected) = 1− p(not infected) = 0.005.

The posterior is then

p(infected|positive) =
p(positive|infected)p(infected)

p(positive|infected)p(infected) + p(positive|not infected)p(not infected)

=
0.95 ∗ 0.005

0.95 ∗ 0.005 + 0.01 ∗ 0.995
= 0.323. (69)
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So you are more likely not to be infected than to be infected if you get a positive test result.
The solution is to get a second opinion. If you take a second (independent) test and it is
also positive your posterior probably of being infected is now

p(infected|2nd positive) =
0.95 ∗ 0.323

0.95 ∗ 0.323 + 0.01 ∗ 0.677
= 0.978 =

0.952 ∗ 0.005

0.952 ∗ 0.005 + 0.012 ∗ 0.995
.

The first of these two results follows from using the posterior from the first test as a prior for
the second. The second result follows from regarding the observed data as “two independent
positive tests”.

Example: Blood evidence Based on other evidence, a detective is 50% sure that a
particular suspect has committed a murder. Then new evidence comes to light. A small
amount of blood, of type B, is found at the scene. This is not the victim’s blood type, but it
is the blood type of the suspect. Such a blood type has a prevalence of 2% in the population.
What is the detective’s confidence in the guilt of the suspect in light of this new evidence?

The likelihood is

p(type B blood|guilty) = 1, p(type B blood|not guilty) = 0.02.

The prior is p(guilty) = 0.5 and so the posterior is

p(guilty|type B blood) =
p(type B blood|guilty)p(guilty)

p(type B blood|guilty)p(guilty) + p(type B blood|not guilty)p(not guilty)
=

0.5

0.5 + 0.01
= 0.98. (70)

5.3 Choice of prior

The prior plays a key role in Bayesian parameter inference. It expresses the current state
of our understanding about parameter values, and it is updated to the posterior using data
via the likelihood. Mathematically, the prior represents the distribution of the unknown
parameter value in nature, but usually this is not known. In that case, the prior reflects
the current state of knowledge about the parameter values, which may come from previous
experiments or expert opinion or not be known.

5.3.1 Informative/expert priors

If information is available, it is appropriate to use informative priors. For example, if previous
measurements have been made of a quantity it is reasonable to use the posterior from those
measurements as a prior for the next measurement, as we saw in the medical test example
above. Alternatively, even if a measurement has not been made directly, “experts” may be
able to give a reasonable range or distribution for the parameter based on experience in
other situations. One criticism that is often levelled at Bayesian inference is that the result
can depend on the assumed prior. However, the Bayesian response is that this is desired
behaviour — if we have additional information from prior knowledge, then it is the correct
thing to do to include that in our conclusions based on subsequent observed data.

The process of constructing a prior based on the opinion of experts is known as elici-
tation. Sometimes, elicitation may result in different priors from different experts. In that



66 Introduction to Statistics for GWs

case a mixture prior can be constructed

p(~θ) =
J∑
j=1

ωjpj(~θ)

where j labels which of the J experts we are referring to, pj(~θ) is the prior elicited from that
expert, and ωj is the weight given to that expert (or set of experts).

If the prior is based on the posterior from previous observations it is normally clear
how to fold this in. If the prior comes from expert opinion, it may be possible to use this in
several different ways. In that case, care must be taken to be as conservative as is reasonably
possible in the use of that prior information, to avoid making conclusions form the data that
are too strong.

5.3.2 Conjugate priors

It is convenient to choose a form for the prior that ensures the posterior takes the same form.
In such situations, the posterior from an experiment can be directly be used as a prior for
the next experiment and so on. Such a prior is called conjugate.

Definition: A family of distributions, F , is conjugate to a family of sampling distribu-
tions, P , if, whenever the prior belongs to the family F , the posterior belongs to the same
family, for any number and value of observations from P .

The form of the conjugate prior depends on the nature of the probability distribution, P ,
from which the observed data is drawn. This gives rise to a number of conjugate families.
In particular, any distribution in the exponential family

p(x| θ) = exp

{
K∑
j=1

Aj(x)Bj(~θ) + C(~θ) +D(x)

}
∀x, ~θ

has a conjugate prior in the exponential family of the form

p(~θ|~χ, ν) = p(~χ, ν) exp
[
~θT ~χ− νA(~θ)

]
(71)

where ν and ~χ are the hyperparameters of the prior distribution.
A full list of conjugate priors can be found in the conjugate prior entry on wikipedia,

but the three most widely used are the Beta-Binomial, Poisson-Gamma and Normal-Normal
families, and we will discuss these further here.

Beta-Binomial model Suppose our observed data X ∼Bin(n, p) with likelihood

p(x|p) =

(
n
x

)
px(1− p)n−x.

The conjugate prior is the Beta(a, b) distribution with density

p(p) =
1

B(a, b)
pa−1(1− p)b−1 =

Γ(a+ b)

Γ(a)Γ(b)
pa−1(1− p)b−1.
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Observing binomial distributed data and using the Beta prior gives a posterior

p(p | x) ∝ p(x | p)p(p)

=

(
n

x

)
px(1− p)n−x Γ(a+ b)

Γ(a)Γ(b)
pa−1(1− p)b−1

∝ pa+x−1(1− p)b+n−x−1.

So the posterior is also a Beta distribution

p(p | x) = Beta(a+ x, b+ n− x).

The mean and variance of a Beta(a, b) distribution are

E(X) =
a

a+ b
, var(X) =

ab

(a+ b)2(a+ b+ 1)
.

The posterior mean is therefore

E(p|x) =
a+ x

a+ b+ n

which we compare to the mean in the observed data of x/n. One interpretation of the prior
data is that it represents having observed a− 1 events in a+ b− 2 previous trials. If a and b
are kept fixed and n, x→∞ the posterior mean tends to the maximum likelihood estimator
x/n and the posterior variance tends to zero.

Poisson-Gamma model Suppose now that we are observing data, X1, . . . , Xn, from a
Poisson distribution, X ∼Pois(λ), with likelihood

p(x | λ) =
n∏
i=1

{
λxie−λ

xi!

}
.

The conjugate prior is the Gamma(m,µ) distribution

p(λ|m,µ) =
1

Γ(m)
µmλm−1e−µλ,

which has mean m/µ and variance m/µ2. With this prior the posterior is

p(λ | x) ∝ p(x|λ)p(λ)

=
n∏
i=1

{
λxie−λ

xi!

}
1

Γ(m)
µmλm−1e−µλ

∝ e−nλ−µλλ
∑n
i=1 xi+m−1

∝ Gamma(m+ nx̄, µ+ n). (72)

The posterior mean can be seen to equal

E(p(λ | x)) =
m+ nx̄

m+ n
= x̄

(
n

n+m

)
+
m

µ

(
1− n

n+m

)
,

i.e., it is a compromise between the prior mean, m/µ, and the maximum likelihood estimator
x̄. As the number of samples increases, more weight is placed on the data and less on the
prior, as expected.
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Normal-Normal/Normal-Gamma model Now we consider X1, . . . , Xn ∼ N(µ, σ2),
and likelihood

p(x|µ, σ2) =
1

(2πσ2)
n
2

exp

[
− 1

2σ2

n∑
i=1

(xi − µ)2

]
.

We assume first that σ2 is known. The conjugate prior in this case is the Normal distribution,
N(µ0, σ

2
0),

p(µ | µ0, σ
2
0) =

1√
2πσ0

exp

[
− 1

2σ2
0

(µ− µ0)2

]
.

The posterior is

p(µ | x, σ2) ∝ p(x | µ, σ2)p(µ|µ0, σ
2
0)

∝ exp

{
− 1

2σ2

∑
i

(xi − µ)2

}
exp

{
− 1

2σ2
0

(µ− µ0)2

}
∝ exp

{
− 1

2σ2σ2
0

[
µ2(nσ2

0 + σ2)− 2µ(nȳσ2
0 + µ0σ

2)
]}

,

which can be recognized as a N(µn, σ
2
n) distribution, where

µn =
nx̄σ2

0 + µ0σ
2

nσ2
0 + σ2

=

µ0

σ2
0

+ n
σ2 x̄

1
σ2

0
+ n

σ2

, σ2
n =

σ2σ2
0

nσ2
0 + σ2

=
1

1
σ2

0
+ n

σ2

. (73)

Writing these results in terms of τ = 1/σ2, which is called the precision of the Normal
distribution we can see

µn =
τ0

τ0 + nτ
µ0 +

nτ

τ0 + nτ
ȳ

so once again the posterior mean is a balance between the prior mean and the sample mean,
with the relative weighting determined by both the number of observations and the relative
precision of the observations and the prior.

If we suppose that µ is known (which is an unrealistic assumption in practice), but the
variance is uncertain, then we can obtain a conjugate prior by using a Gamma(a, b) prior on
the precision

p(τ |a, b) ∝ τa−1e−bτ

and obtain the posterior

p(τ | x, µ) ∝ p(x | µ, τ)p(τ |a, b)

∝ τn/2 exp

{
−τ

2

n∑
i=1

(xi − µ)2

}
τa−1e−bτ

= τa+n/2−1 exp

{
−τ
(
b+

1

2

∑
i

(xi − µ)2

)}

∼ Gamma

(
a+

n

2
, b+

1

2

n∑
i=1

(xi − µ)2

)
.
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It is common practice to take the limit in which a and b are both very small and then the
posterior becomes

p(τ | x, µ) = Gamma

(
n

2
,
1

2

n∑
i=1

(xi − µ)2

)
⇒ E [τ | x, µ] =

(
1

n

n∑
i=1

(xi − µ)2

)−1

,

so the posterior expectation of the precision is approximately the same as the (frequentist)
sample precision (up to a factor of n/(n− 1)).

Finally we assume that both µ and σ2 are unknown. It would be reasonable to just
multiply together the two previous priors, but this does not result in a conjugate prior,
essentially because the posterior on µ in the first case depends on the known variance σ2.
However, we can find a correlated conjugate prior (writing τ = 1/σ2 as before) by writing

µ ∼ N(µ0, 1/(n0τ)), τ ∼ Gamma(a, b),

or, explicitly,

p(µ, τ |µ0, n0, a, b) ∝
(n0τ

2π

)n
2

exp
[
−n0τ

2
(µ− µ0)2

]
τa−1e−bτ .

The posterior on µ, conditioned on τ , p(µ|τ,x), is given by the same expression as before

p(µ|τ,x) ∼ N

(
n0µ0 + nx̄

n0 + n
,

1

(n0 + n)τ

)
.

The posterior on τ can be found by considering the combined posterior, being careful not to
drop any terms that depend on µ or τ

p(µ, τ |x) ∝ √τ exp

[
−τ

2

n∑
i=1

(xi − µ)2

]
τ
n
2 exp

[
−n0τ

2
(µ− µ0)2

]
τa−1e−bτ

= τa+n
2
−1 exp

[
−
(
b− (nx̄+ n0µ0)2

2(n+ n0)
+

1

2
n0µ

2
0 +

1

2

∑
x2
i

)
τ

]
×

×
(√

(n+ n0)τ

2π
exp

[
−(n+ n0)τ

2

(
µ− (nx̄+ n0µ0)

n+ n0

)2
])

. (74)

If we now marginalise over µ, the round bracketed term on the final line integrates to a
constant, independent of τ , and the term inside the exponent on the penultimate line can
be simplified to obtain

p(τ |x) ∝ τa+n
2
−1 exp

[
−
(
b+

1

2

n∑
i=1

(xi − x̄)2 +
nn0

2(n+ n0)
(µ0 − x̄)2

)
τ

]

⇒ p(τ |x) ∼ Gamma

(
a+

n

2
, b+

1

2

n∑
i=1

(xi − x̄)2 +
nn0

2(n+ n0)
(µ0 − x̄)2

)
. (75)

And so this is also a conjugate prior model, called the Normal-Gamma model.
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5.3.3 Using expert information with conjugate priors

If expert prior information is in the form of a posterior from a previous experiment the form
of the distribution is fixed. However, in other circumstances it can be possible to express
the prior information in the form of a particular choice of parameters for a conjugate prior.
This is most clearly seen with an example.

Example: Consider a drug to be given for relief of chronic pain. Experience with similar
compounds has suggested that response rates, p, between 0.2 and 0.6 could be feasible. We
plan to observe the response rate in n patients and want to infer a posterior on p. Propose
a suitable conjugate prior for p based on the available information.

A response rate between 0.2 and 0.6 could be used to set a uniform prior in that range.
However, this is not conjugate to the binomial distribution that determines the observed
data. Therefore, it would be better to use a conjugate prior. A U [0.2, 0.6] distribution
has mean 0.4 and standard deviation of 0.1. We can find a Beta distribution that has
the same mean and standard deviation. Rearranging the equations given earlier we deduce
Beta(a = 9.2, b = 13.8) has the desired mean and variance. This prior is conjugate and
reflects the expert opinion as regards the expected response rate for the drug. Suppose
now we observe n = 20 patients and x = 15 respond positively. The posterior is then
Beta(9.2 + 15, 13.8 + 5) = Beta(24.2, 18.8). The prior, (scaled) likelihood and posterior are
illustrated in Figure 8.

5.3.4 Mixture priors

The use of a conjugate prior can be somewhat restrictive as there is limited flexibility within
the prior family. However, one way to get around this is by using mixture priors. A
mixture prior is of the form

p(~θ) =
J∑
j=i

πjp(~θ | ~ψj),
J∑
j=1

πj = 1. (76)

Here {πj} are called the mixture weights and it is assumed that the hyperparameters, ψj, are
different in each component. If the mixture components are all drawn from the conjugate
prior family, then the mixture prior is also conjugate.

Example: Beta-Binomial mixture prior Suppose X ∼ Bin(n, p) and we use a prior
on p that is a mixture distribution

p(p|a1, b1, a2, b2) = πBeta(a1, b1) + (1− π)Beta(a2, b2).

What is the posterior distribution for p?
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Figure 8: Conjugate prior, Beta(9.2, 13.8), likelihood, Bin(20, p), and posterior,
Beta(24.2, 18.8) for the drug response problem described in the text. The likelihood has
been rescaled to ensure it has a similar height to the prior and posterior distributions.
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Solution: We find the posterior as follows

p(p | x) ∝
(
n

x

)
px(1− p)n−x

{
π

1

B(a1, b1)
pa1−1(1− p)b1−1 + (1− π) 1

B(a2, b2)
pa2−1(1− p)b2−1

}
∝ π 1

B(a1, b1)
pa1+x−1(1− p)b1+n−x−1 + (1− π) 1

B(a2, b2)
pa2+x−1(1− p)b2+n−x−1

= π
B(a1 + x, b1 + n− x)

B(a1, b1)

1

B(a1 + x, b1 + n− x)p
a1+x−1(1− p)b1+n−x−1

+ (1− π)B(a2 + x, b2 + n− x)
B(a2, b2)

1

B(a2 + x, b2 + n− x)p
a2+x−1(1− p)b2+n−x−1

= π
B(a1 + x, b1 + n− x)

B(a1, b1)
Beta(p | a1 + x, b1 + n− x)

+ (1− π)B(a2 + x, b2 + n− x)
B(a2, b2)

Beta(p | a2 + x, b2 + n− x).

We finish by normalising the weights to obtain

p | x ∼ ω1Beta(p | a1 + x, b1 + n− x) + (1− ω1)Beta(p | a2 + x, b2 + n− x)

with

ω1 = π
B(a1 + x, b1 + n− x)

B(a1, b1)

(
π
B(a1 + x, b1 + n− x)

B(a1, b1)
+ (1− π)

B(a2 + x, b2 + n− x)

B(a2, b2)

)−1

So the posterior is also a mixture of Beta distributions.

5.3.5 Jeffreys prior

If we do not have any prior information, it is normal to use an “uninformative” prior, i.e.,
a prior that assumes as little as possible about the parameter values. It is common to use
uniform priors as uninformative priors, so that the posterior basically corresponds to the
likelihood of the data. This is approach taken for many parameters in parameter estimation
of gravitational wave data and was in fact the approach that Bayes himself advocated.
However, uniform priors are not invariant under re-parameterisation. If one is ignorant
about the value of θ, one is also ignorant about the value of θ2 or any other function of
θ. Therefore, any uninformative prior should induce the same form of uninformative prior
on any other variables defined by transformation. Jeffreys (1961) proposed a class of priors
that are invariant under re-parameterisations. By identifying the probability density with a
metric on parameter space he argued that the prior should take the form [det(gij)]

1/2 where
the metric

gij(~θ) =
1

f(~θ)

∂f

∂θi

∂f

∂θj
.

This would lead to an invariant prior for any scalar function f(~θ). Jeffreys advocated the
use of the likelihood, which introduces a data dependence into the expression, that can be
eliminated by taking the expectation over realisations of the data. This procedure leads to
Jeffreys prior which is

p(~θ) ∝
√

det[I(~θ)], where I(~θ)ij = E
[
∂l

∂θi

∂l

∂θj

]
for l = log p(x|~θ) the log-likelihood is the Fisher information matrix.
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Jeffreys prior is “uninformative” because it can be interpreted as being as close as possible
to the likelihood function and it is invariant under re-parameterisation. However, it is rarely
a member of the conjugate family of distributions or of some other convenient form which
is why it is not always convenient to use it in practice. Note also that the Jeffreys prior is
not always proper, i.e., it does not always have a finite integral and therefore may not be
normalisable.

Example: Poisson distribution For a single observation, x, from the Poisson(λ) dis-
tribution with pmf

p(x|λ) =
λxe−λ

x!
we have

∂ log p

∂λ
=
x

λ
− 1,

∂2 log p

∂λ2
= − x

λ2
⇒ I(λ) ≡ E

[
−∂

2 log p

∂λ2

]
=

1

λ
.

The Jeffreys prior for the Poisson distribution is therefore p(λ) ∝ 1/
√
λ. This is an example

of an improper prior, since it cannot be normalised to integrate to 1 unless the range of
rates is restricted.

5.4 Posterior summary statistics

The result of a Bayesian inference calculation is a probability distribution, the full posterior
probability distribution of the parameters, p(~θ|x). This is not only difficult to calculate in
many cases, it is also unwieldy to manipulate and so it is common to use quantities that
summarise the properties of the distribution. These are all of the summary statistics that
we encountered in the first chapter of the course.

5.4.1 Point estimates

To obtain point estimates of a parameter value, θ1 say, one typically works with the marginalised
distribution for that parameter, defined by

pmarg(θ1|x) =

∫
p(~θ|x)dθ2 . . . dθm.

From this marginal distribution, we can evaluate the posterior mean

µ =

∫ ∞
−∞

θ1pmarg(θ1|x)dθ1

or the posterior median, m, defined such that∫ m

−∞
pmarg(θ1|x)dθ1 = 0.5 =

∫ ∞
m

pmarg(θ1|x)dθ1

or the posterior mode
M = argmax pmarg(θ1|x).

The posterior mean and mode can be defined unambiguously over the full distribution as
well. The posterior mean is the same whether computed over the marginal distribution or
the full distribution, but the mode typically changes. The median is not unambiguously
defined on the whole distribution, as there are infinitely many ways to partition the full
parameter space into equal probability subsets.
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5.4.2 Credible intervals

To move beyond point estimates, it is natural to want to describe ranges in which parameter
values are estimated to lie. The Bayesian equivalent of a frequentist confidence interval is a
credible interval. This is defined as

Definition: An interval (a, b) is a 100(1− α)% posterior credible interval for θ1 if∫ b

a

pmarg(θ1|x)dθ1 = (1− α), 0 ≤ α ≤ 1.

A credible region can be defined in a similar way. This is any partition of parameter
space that contains 100(1−α)% of the total posterior probability. Clearly credible intervals
and regions are not unique, but there are two types of credible interval that are commonly
used.

Definition: An interval (a, b) is a symmetric 100(1 − α)% posterior credible interval
for θ1 if ∫ a

−∞
pmarg(θ1|x)dθ1 =

α

2
=

∫ ∞
b

pmarg(θ1|x)dθ1.

Definition: An interval (a, b) is a 100(1 − α)% highest posterior density (HPD)
interval for θ1 if

1. [a, b] is a 100(1− α)% credible interval for θ1;

2. for all θ ∈ [a, b] and θ′ /∈ [a, b] we have pmarg(θ|x) ≥ pmarg(θ′|x).

Credible intervals are more intuitive than confidence intervals as they make an explicit
statement about the probability that the parameter takes values in the range, rather than
referencing an ensemble of similar experiments.

5.4.3 Posterior samples

Summary statistics provide a useful way to summarise and compare distributions, but they
inevitably discard information. To retain full information about the parameters we need the
full posterior. Often this cannot be written down in a simple analytic form, but it can be
summarised by drawing a set of samples {~θ1, . . . , ~θM} randomly from the posterior. Such
samples can then be used to compute integrals over the posterior

∫
f(~θ)p(~θ|x)d~θ ≈ 1

M

M∑
i=1

f(~θi).

Most quantities that one might wish to compute from a posterior distribution can be ex-
pressed as integrals of this form, and so generation of such samples is the most complete way
to represent posterior distributions. Efficient production of samples is non-trivial and will
be the topic of the next chapter of these notes.
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5.5 Interpreting summary statistics*

5.5.1 Decision theory

The posterior mean, mode and median are all valid ways to summarise a posterior distribu-
tion. One way to motivate these (and other possible) choices is through decision theory. In
decision theory, understanding which decision is the best is motivated by introducing a loss
function which characterises the cost or penalty of making a particular decision. Formally
we define various quantities

• The sample space X denotes the possible values for the observed data, x.

• The parameter space, Ωθ, denotes possible (unknown) states of nature (or parameter
values characterising the true pdf of observed data sets).

• We define a family of probability distributions, {Pθ(x) : x ∈ X , θ ∈ Ωθ}, which
describe how the observed data is generated in the possible states of nature.

• The action space, A, is the set of actions that an experimenter can take after observ-
ing data, e.g., reject or accept a null hypothesis, assign an estimate to the value of θ
etc.

• The loss function, L : Ωθ × A → R, is a mapping from the space of actions and
parameters to the real numbers, such that L(a, θ) is the loss associated with taking
the action a when the true state of nature is θ.

• The set of decision rules, D, is a set of mappings from data to actions. Each element
d ∈ D is a function d : X → A that associates a particular action with each possible
observed data set.

For a parameter value θ ∈ Ωθ, the risk of a decision rule, d, is defined as

R(θ, d) = EθL(θ, d(X)) =

{ ∑
x∈X L(θ, d(x))p(x; θ) for discrete X∫
X L(θ, d(x))p(x; θ)dx for continuous X .

In other words, the risk is the expected loss of a particular decision rule when the true value
of the unknown parameter is θ. Note that this is fundamentally a frequentist concept, since
the definition implicitly invokes the idea of repeated samples from the parameter space X
and computes the average loss over these hypothetical repetitions. However, it is possible to
extend these ideas to a Bayesian framework by defining a prior, π(θ), over the parameters
of the distribution. The Bayes risk of a decision rule, d, is then defined as

r(π, d) =

∫
θ∈Ωθ

R(θ, d)π(θ)dθ,

or by a sum in the case of a discrete-valued probability distribution. A decision rule is a
Bayes rule with respect to the prior π(·) if it minimizes the Bayes risk, i.e.,

r(π, d) = inf
d′∈D

r(π, d′) = mπ, say.

Note that, as usual in a Bayesian context, the Bayes rule depends on the specification of the
prior and therefore there will be infinitely many Bayes rules for any particular problem. A
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useful choice of prior is the one that is most conservative in its estimate of risk. This gives
rise to the concept of a least favourable prior. The prior π(θ) is least favourable if, for
any other prior π′(θ) we have

r(π, dπ) ≥ r(π′, dπ′)

where dπ, dπ′ are the Bayes rules corresponding to π(·) and π′(·) respectively.

5.5.2 Bayes rules as minimizers of posterior expected loss

The Bayes risk can be written as

r(π, d) =

∫
Ωθ

R(θ, d)π(θ)dθ

=

∫
Ωθ

∫
X
L(θ, d(x))p(x|θ)π(θ)dxdθ

=

∫
Ωθ

∫
X
L(θ, d(x))p(θ|x)p(x)dxdθ

=

∫
X
p(x)

{∫
Ωθ

L(θ, d(x))p(θ|x)dθ

}
dx

where the second line follows from the definition of the risk function and the third line follows
by using Bayes’ theorem to write p(x|θ)π(θ) = p(θ|x)p(x) in terms of the posterior p(θ|x)
and the evidence p(x). The Bayes rule minimizes the Bayes risk. We see that this minimum
is achieved for a particular value of x by making the decision that minimizes the expression
in curly brackets. This is the expected posterior loss associated with the observed x. This
observation simplifies the calculation in many cases and also illustrates the general property
of Bayesian procedures, namely that the decision depends only on the observed data and
not on potential unobserved data sets.

We will illustrate this with four examples. In the first three examples, we are attempting
to make a point estimate and so the decision is an assignment of the value of the parameter
d = θ̂.

Example: Point estimation with squared error loss Suppose we want to make a
point estimate of a parameter and we use a squared error loss function, L(θ, d) = (θ − d)2.
Find the Bayes rule.

Solution
The Bayes rule chooses d(Y ) to minimize∫

Ωθ

(θ − d)2p(θ|y)dθ.

Differentiating with respect to d and setting this to zero gives∫
Ωθ

(θ − d)p(θ|x)dθ = 0 ⇒ d =

∫
Ωθ

θp(θ|x)dθ.

In other words, the Bayes estimator of θ, with squared error loss, is the posterior mean.
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Example: Point estimation with absolute magnitude error loss
Suppose we instead use the loss function L(θ, d) = |θ − d|. Find the new Bayes rule.

Solution
In this case, the Bayes rule minimizes∫ d

−∞
(d− θ)p(θ|x)dθ +

∫ ∞
d

(θ − d)p(θ|x)dθ.

Setting the derivative with respect to d to zero now gives∫ d

−∞
p(θ|x)dθ −

∫ ∞
d

p(θ|x)dθ = 0 ⇒
∫ d

−∞
p(θ|x)dθ =

∫ ∞
d

p(θ|x)dθ =
1

2
.

In other words, the Bayes estimator of θ, with absolute magnitude error loss, is the posterior
median.

Example: Point estimation with delta-function gain
Suppose we instead use the loss function

L(θ, d) =

{
−δ(θ − d) if d = θ

0 if d 6= θ
.

In other words, the loss is infinitely higher for any value except the correct one. Find the
new Bayes rule.

Solution
In this case, the Bayes rule minimizes

−
∫ ∞
−∞

δ(θ − d)p(θ|x)dθ = −p(d|x).

The minimum loss is obtained by setting

d = argmaxp(d|x),

i.e., the posterior mode.

Example: Interval estimation
Suppose we have a loss function of the form

L(θ, d) =

{
0 if |θ − d| ≤ δ
1 if |θ − d| > δ

for specified δ > 0. What is the Bayes rule?
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Solution
The expected posterior loss in this case is the posterior probability that |θ − d| > δ.

The interval that minimises this loss, among intervals of fixed length 2δ, is the interval
that contains the highest posterior probability. This is called the highest posterior density
interval.

We see that all of the “natural” ways to obtain a point estimate from a Bayesian posterior
can be interpreted in terms of Bayes rule’s with different loss functions.

5.6 Bayesian hypothesis testing

The denominator that appears in Bayes’ theorem is the Bayesian evidence and can be com-
puted via

Z = p(x) =

∫
p(x | ~θ)p(~θ)d~θ. (77)

When writing down Bayes’ theorem we suppressed the fact that all of the quantities were
conditioned on the particular model we were assuming for the data generating process.
Explicitly reintroducing the dependence on the model, M , we have

p(~θ|x,M) =
p(x|~θ,M)p(~θ|M)

p(x|M)
.

This makes it clear that the evidence, p(x|M), represents the probability of seeing the model
data under model M and can be thought of as the likelihood for the model given the observed
data. If we now have more than one model, M1 and M2 say, that we believe could describe
the data, we can compute the posterior odds ratio for M1 over M2

O12 =
p(x|M1)

p(x|M2)

p(M1)

p(M2)
.

The first term is called the Bayes factor and is the ratio of the model likelihoods. The
second term is the prior odds ratio, which represents our prior belief about the relative
probability of the two models. The posterior odds is the ratio of model probabilities based
on the observed data and is the basis for Bayesian hypothesis testing. For O12 � 1 we favour
model M1, while for O12 � 1 we favour M2.

In the case of a flat prior on models the prior odds ratio is just 1 and decisions are based
on the Bayes factor. Kass and Rafferty (1995) described a ‘rule of thumb’ for interpreting
Bayes’ factors. This is summarised in Table 1. This Table can be used to interpret the
results of Bayesian hypothesis tests. Alternatively, the distribution of the Bayes factor can
be computed under the null hypothesis and used, in a frequentist way, to produce a mapping
between p-values and Bayesian posterior odds ratios.

The models M1 and M2 need not be very different, but could, for example, represent dif-
ferent regions of the parameter space of a distribution, e.g., M1 : θ ∈ Θ1 versus M2 : θ ∈ Θ2.
If the two hypotheses are both simple then the Bayes factor reduces to the likelihood ratio,
which we saw was the optimal test statistic in the frequentist hypothesis testing context.

Computation of the Bayesian evidence is challenging. Most sampling algorithms that
return independent samples from the posterior ignore the evidence as it is just a normalisa-
tion constant. The evidence can be written as an integral over the posterior which can be
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Bayes Factor Interpretation
< 3 No evidence of M1 over M2

> 3 Positive evidence for M1

> 20 Strong evidence for M1

> 150 Very strong evidence for M1

Table 1: Table for intepretation of Bayes’ factors, as presented in Kass and Rafferty (1995).

approximated by a sum over samples

1

Z =

∫
1

p(x | ~θ)
p(x | ~θ)p(~θ)

Z d~θ ≈ 1

M

M∑
i=1

1

p(x | ~θi)
.

In other words it is the harmonic mean of the likelihoods of the samples. This is an extremely
unstable approximation, however, as this sum is dominated by points with small likelihoods,
but these are precisely the regions where there will be fewer samples and hence larger Monte
Carlo error. Other techniques, such as nested sampling, can be used to compute evidences
more accurately and these will be discussed in the next chapter.

Example: Suppose we have a two dimensional Normal likelihood of the form

p(x|~θ) =

√
1− ρ2

2πσ1σ2

exp

[
−1

(
(x1 − µ1)2

σ2
1

+ 2
ρ(x1 − µ1)(x2 − µ2)

σ1σ2

+
(x2 − µ2)2

σ2
2

)]
(78)

and use priors for the parameters µ1 and µ2 of the form

p(µ1) =
1

Σ1

√
2π

exp

[
− 1

2Σ2
1

µ2
1

]
, p(µ2) =

1

Σ2

√
2π

exp

[
− 1

2Σ2
2

µ2
2

]
. (79)

We are interested in comparing the two models

M1 : µ2 = 0, M2 : µ2 ∈ (−∞,∞).

The evidence for M1 can be computed as

Z1 =
1

2πσ2

√
1− ρ2

σ2
1 + Σ2

1

exp

[
−x

2
2(σ2

1 − (1− ρ2)Σ2
1) + 2ρx1x2σ1σ2 + σ2

2x
2
1

2σ2
2(σ2

1 + Σ2
1)

]
and for M2 it is

Z2 =
1

2π

√
1− ρ2

σ2
1(σ2

2 + Σ2
2) + Σ2

1(σ2
2 + (1− ρ2)Σ2

2)
×

× exp

[
−x

2
2((1− ρ2)Σ2

1 + σ2
1) + 2ρx1x2σ1σ2 + x2

1((1− ρ2)Σ2
2 + σ2

2)

2Σ2
1((1− ρ2)Σ2

2 + σ2
2) + 2σ2

1(σ2
2 + Σ2

2)

]
(80)

which gives the posterior odds ratio in favour of M2, for equal prior odds (which is just the
Bayes factor)

O21 =
Z2

Z1

= σ2

√
Σ2

1 + σ2
1

Σ2
1((1− ρ2)Σ2

2 + σ2
2) + σ2

1(Σ2
2 + σ2

2)
×

× exp

[
Σ2

2(x2((1− ρ2)Σ2
1 + σ2

1) + ρx1σ1σ2)2

2(Σ2
1 + σ2

1)σ2
2(σ2

1(Σ2
2 + σ2

2) + Σ2
1((1− ρ2)Σ2

2 + σ2
2))

]
. (81)
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This is difficult to interpret, but if we now assume that Σ2
1 � σ2

1, i.e., that the prior in µ1 is
much broader than the typical measurement uncertainty, the odds ratio simplifies to

O21 ≈ σ2

√
1

(1− ρ2)Σ2
2 + σ2

2

exp

[
(1− ρ2)x2

2

2σ2
2

]
We see that there is a competition between the size of the additional variable dimension
(characterised by Σ2) in the first term and the weight of evidence for the additional effect
in the data (characterised by the second term). Only if the addition of the extra dimension
significantly improves the fit to the data (characterised by x2 which is effectively the peak
of the posterior in µ2 when that parameter is allowed to vary) should the more complex
model be favoured. If the fit does not improve, then the addition of the extra dimension is
penalised by the first term and so the more complex model should not be preferred. It is
often said that Bayesian posterior odds ratios automatically encode the notion of “Occam’s
razor”, i.e., one should use the simplest model that adequately describes the data since
adding extra degrees of freedom always improves a fit. This is the sense in which it is meant.
Addition of extra dimensions typically includes a prior penalty, as we see here, which will
lead to the disfavouring of an alternative model unless the likelihood shows a significantly
great improvement when the extra degrees of freedom are included.

5.7 Predictive checking

In both a frequentist and a Bayesian context it is natural to ask whether the model is a good
representation of the observed data. In the Bayesian context this is accomplished by using
predictive distributions.

Definition: the prior predictive distribution is the probability distribution

p(x) =

∫
~θ∈Θ

p(x|~θ)p(~θ)d~θ.

This is the likelihood weighted by the assigned prior distribution and therefore represents
our a priori belief about the distribution of data sets that would be observed. Similarly, we
have the following

Definition: the posterior predictive distribution is the probability distribution

p(y|x) =

∫
~θ∈Θ

p(y|~θ)p(~θ|x)d~θ.

This is the likelihood weighted by the posterior probability based on the observed data
x and is our expectation about the distribution of future data sets y.

The posterior predictive distribution can be used to assess whether the observed data is
unusual within the posterior distribution, which is an indicator about whether or not the
model is a good fit. Based on the observed data x we generate a large number of new data
sets {y1, . . .yN} that are similar to x, i.e., they consist of the same number of observations.
For each data set we compute a set of summary statistics, and hence obtain the distribution
of the summary statistics over many realisations of the posterior predictive distribution. We
can then assess the “p-value” of the observed data within these distributions. If it looks like
an outlier in any one of these distributions this suggests the model is not a good fit. Suitable
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summary statistics could include the maximum, minimum, median, skewness, kurtosis etc.
Ideally we choose summary statistics that are orthogonal to the model parameters to increase
sensitivity, since we are using the data twice (once to compute the posterior and once to
compare to the predictive distribution). Statistics that are effectively tuned to the observed
data will tend to lie in the middle of the predictive distributions by construction, even if the
model is poor. We will see an example of this in the next section.

5.8 Example: regression

To illustrate some of the ideas discussed above we will present a Bayesian analysis of a
regression problem. We suppose that we have made measurements of a set of values, {yi},
corresponding to sets of p known explanatory variables, {xi}, and we believe that these
follow a linear relationship with equal variance normally distributed errors

yi ∼ N(xTi
~β, σ2), i = 1, . . . , N.

We want to infer the parameters of the linear relationship, ~β, and the unknown precision
τ = 1/σ2. We use a Bayesian framework and so must write down prior distributions on these
parameters. We can assume a separable prior

p(~β, τ) = p(τ)

p∏
i=1

p(βj)

and take Normal priors for the βj’s and a Gamma prior for τ as these are conjugate priors
in the Normal-Gamma model

βj ∼ N(µβj , σ
2
βj

), τ ∼ Gamma(a, b).

In the absence of prior information it is reasonable to set µβj = 0. Inferred values of
the coefficients that are non-zero then provide evidence for the existence of a relationship
between the observed data and those explanatory variables. Setting σ2

j to a large value, say
104, indicates large uncertainty in the parameter values and avoids strong prior dependence
in the results. For the prior on τ , it is usual to take small values of a and b, for example
a = b = 0.1 or a = b = 0.01. However, such priors lead to a preferred value (i.e., a peak) in
the prior and so the use of such priors is somewhat controversial.

To illustrate fitting such a model, we can use a standard data set, the mtcars data set,
which is available in the R statistical software package and may also be found online. The
data set contains observations, yi, of the miles driven per gallon in the i’th of 32 different
models of car, with explanatory variables xi1, the rear axle ratio, xi2, the weight of the i’th
car and xi3, the time to drive 0.25 miles from rest. We fit the model

yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi, εi
iid∼ N(0, 1/τ), i = 1, . . . 32,

with βj ∼ N(0, 1000) and τ ∼ Gamma(0.1, 0.1). We can use statistical software (in this case
R) to generate samples from the posterior. Techniques for doing this will be discussed in the
next chapter, and in the associated practical. using these samples we can obtain a posterior
mean and 95% symmetric credible interval for each parameter. These can be compared to
the frequentist estimates of the same parameters and the frequentist 95% confidence interval
(see problem sheet 1). This comparison is in Table 2.
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Bayesian results Frequentist results
Parameter Posterior mean 95% credible interval MLE 95% confidence interval

β0 10.369 [-5.098,36.349] 11.395 [-5.134,27.922]
β1 1.777 [-0.721,4.166] 1.750 [-0.857,4.169]
β2 -4.335 [-5.702,-2.995] -4.347 [-5.787,-3.009]
β3 0.968 [0.449,1.493] 0.946 [0.410,1.482]
σ2 6.978 [4.160,11.729] 6.554 —

Table 2: Comparison between Bayesian and frequentist estimates of the linear model fit to
the mtcars data set.

The results of the Bayesian fit are quite consistent between the two approaches, although
there are some differences and the interpretation of the results is different. We now want
to assess the quality of the results. In a frequentist setting, assessment of the quality of a
linear model fit is done through the production of studentised residuals and Q-Q plots. A
studentised residual is

ε̂i =
yi − xTi β̂

σ̂
√

1− hii
where β̂ are the estimated parameters, σ̂ is the estimated standard deviaiton and hii is the
i’th diagonal element of the matrix H = x(xTx)−1xT . These quantities follow a student-t
distribution which is why they are called studentised residuals. A Q − Q plot is a plot of
the distribution of these values against the theoretical distribution, which should be approx-
imately a straight line if the model is a good description of the data.

We can construct analogous quantities in the Bayesian case, but now the parameters are
described by distributions rather than point estimates. A point estimate can be constructed
in a number of different ways — using posterior mean values, using a single draw from the
posterior, or averaging over the full posterior. The latter approach involves computing the
studentised residual for a large number of draws from the posterior and averaging them, and
is called the posterior mean of the residual. Studentised residuals are plotted in various ways
in Figure 9.

We can also produce posterior predictive checks as described in section 5.7. We compute
realisations of similar data sets and estimate the distribution of various summary statistics
which we then compare to the values in the observed data sets. In this case we compute
the distributions of the minimum, maximum, median and skewness in repeated data sets.
These are shown in Figure 10, along with the values in the observed data set. We see that
the observed values lie within the distributions in all cases, except for skewness. Seeing that
the observed data lies in the tail of the distribution may indicate a failure of the model. In
this case we might want to try varying the assumption of normally distributed errors and
homoskedacity (equal error variance).

The issue with the posterior predictive checks could indicate a failure of the model, or the
influence of an outlying data point. One way to tackle this is to modify the model so that the
distribution of the errors εi is no longer assumed to be normal. The most common approach
is to replace the normal distribution by a tν-distribution, as these have heavier tails. This is
referred to as robust regression. The degrees of freedom, ν, in the tν-distribution can be
fixed to some reasonable value, or allowed to vary in a hierarchical model (see next section).
In that case the prior on ν is usually taken to be a Gamma distribution, ν ∼ Gamma(c, d).

For the mtcars dataset we try this, using prior values c = d = 0.1, and then look at the
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Figure 9: Q−Q plot of the studentised residuals (left), studentised residual versus index of
data point (middle) and studentised residual versus posterior mean of the predicted value,
ŷi, for the Bayesian fit to the mtcars data set. We look for the left hand plot to be on
the diagonal line, for the middle and right hand plots we want the values to be randomly
distributed (i.e., no trend with the x value) and in the range from minus a few to plus a few.
These constraints are all satisfied here and so we see no cause for concern.

posterior predictive distribution again. The results for the skewness are shown in Figure 11.
We that robustifying regression can help to improve the model fit in this case. The observed
dat moves from lying at the 99.6% point of the distribution to lying at the 96.3%. So, it
is still something of an outlier but it is not so much a cause for concern. It is perhaps not
surprising that the use of robust regression only helped a small amount in this case, since
we are trying to compensate for non-zero skew in the data and the t-distribution is also a
symmetric distribution.

5.9 Hierarchical models

In many contexts, for example the observation of mergers of compact binary coalescences
through gravitational wave observations, the likelihood describes the observation of a single
event, and the prior describes the distribution of parameter values in the population from
which the events are drawn. Often the parameters of the population prior are not themselves
known but are of interest. For example, we do not know the distribution of masses of black
holes in binaries and would like to learn about this from observations of the gravitational
wave sources. This leads to the notion of a hierarchical model, in which the likelihood
for data depends on parameters for which we write down a prior that in turn depends on
unknown parameters (usually termed hyperparameters), for which we write down another
prior (the hyperprior).

This hierarchy can be continued to more and more levels, but such models increase
rapidly in complexity. Inference on complex hierarchical models can be simplified by impos-
ing a conditional independence structure in the models, e.g., p(x, y, z) = p(x|z)p(y|z)p(z).
Conditional dependence structures can be compactly represented using graphical models.
These are directed acyclic graphs that indicate dependencies between various components of
the model. It is important that the graph has no cycles as only then can the joint probability
be factorised. An example of a graphical model is shown in Figure 12. This model represents
the following conditional dependence structure

p(p, q, r, s, t, u, v, w, x, y, z) = p(x|y, z)p(y|u,w)p(w|v)p(u)p(v)p(z|r)p(r|p, q)p(p)p(q) (82)
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Figure 10: Predictive distributions for the maximum (top left), minimum (top right), median
(bottom right) and skewness (bottom right) in replicated data sets of size 32, based on the
posterior distribution from the mtcars data set. The vertical red lines indicate the values
in the data set form which the posterior was obtained. We see that this lies in the middle of
the distribution in all cases, except skewness, in which it lies in the tail, which might indicate
a failure to properly fit the data.
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Figure 11: Posterior predictive distribution of skewness for the robustified regression model.
The observed value of the skewness is indicated by a vertical red line as before.
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Figure 12: Illustration of a Bayesian graphical model. This is an acyclic directed graph that
indicates conditional dependencies in complex Bayesian hierarchical models.

5.9.1 Selection effects

One thing that is important to account for in hierarchical modelling are selection effects.
The decision about whether or not to include an event in a catalogue used for inference is
based on whether or not the event is “detected”, i.e., whether or not the observed data passes
some pre-determined threshold criterion for inclusion. This is usually a property of the data
only. Selection effects can be included by modifying the likelihood so that it represents the
likelihood of “detected” data sets. If the un-corrected likelihood is p(x|~θ) then the likelihood
for observed events is just

p(x|~θ, obs) =
1

ps(~θ)
p(x|~θ), where ps(~θ) =

∫
x>threshold

p(x|~θ)dx.

The integral is over all data sets that would have been considered as “detections”, i.e.,
passing the threshold for inclusion in inference. What we have done here is renormalise the
likelihood so that it integrates to 1 over all above threshold data sets. Since the partition of
the data into observed and unobserved is a property of x only, the relative probabilities of
different above threshold data sets must be in proportion to their probabilities in the set of
all data sets.

Usually, the likelihood will depend on parameters of the particular source, ~θ, that are
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themselves determined by the priors, which depends on the hyperparameters of the popula-
tion, ~λ. Then the likelihood for observed events, marginalised over the source parameters is
simply

p(x|~λ, obs) =
1

ps(~λ)

∫
p(x|~θ)p(~θ|~λ)d~θ, where ps(~λ) =

∫
x>threshold

∫
p(x|~θ)p(~θ|~λ)d~θdx.

(83)

Usually we are interested in the parameters of individual sources as well as the overall
population parameters. The joint likelihood of x and ~θ, conditioned on detection, is

p(x, ~θ|~λ, obs) = p(x|~θ, obs)p(~θ|~λ, obs).

The first term is Eq. (5.9.1), but for the source parameters ~θ

p(x|~θ, obs) =
p(x|~θ)
p(obs|~θ)

, where p(obs|~θ) =

∫
x>threshold

p(x|~θ)dx.

The second term is the prior on ~θ for events above threshold. However, this prior is modified
from p(~θ|~λ) by the conditioning on detection, namely

p(~θ|~λ, obs) =
p(~θ, obs|~λ)

p(obs|~λ)
=
p(obs|~θ, ~λ)p(~θ|~λ)

p(obs|~λ)
=
p(obs|~θ)p(~θ|~λ)

ps(~λ)
.

Putting this together we see that the terms relating to selection on ~θ, p(obs|~θ), cancel and
the joint likelihood is

p(x, ~θ|~λ, obs) =
p(x|~θ)p(~θ|~λ)

ps(~λ)

giving a posterior on ~θ
p(~θ|x, ~λ, obs) ∝ p(x|~θ)p(~θ|~λ)

which is unchanged from the posterior that would be written down if there is no selection.
We see that the selection effects corrections do not change inference about the parameters
of individual sources, only inference about the hyperparameters governing the population as
a whole.

This approach implicitly assumes that the number of observed events contains no infor-
mation about the unknown parameters. An alternative approach is to write down a joint
likelihood for all events, both the Nobs events that are observed, {xi}, with parameters {~θi},
and the Nnobs events that are unobserved, {xj}, with parameters {~θj}. We model the number

of events as a Poisson process with overall rate N(~λ), and rate density dN/d~θ. The joint
likelihood is

p
({
~θi

}
,
{
~θj

}
, {xi} , {xj} | ~λ

)
∝
[
Nobs∏
i=1

p
(
xi | ~θi

) dN

d~θi

(
~λ
)]
×

×
[
Nnobs∏
j=1

p
(
xj | ~θj

) dN

d~θj

(
~λ
)]

exp
[
−N

(
~λ
)]

(84)
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We can marginalise over the unobserved data to obtain

p
({
~θi

}
, {xi} | ~λ

)
∝

[
Nobs∏
i=1

p
(
xi | ~θi

) dN

d~θi

(
~λ
)] NNnobs

ndet

(
~λ
)

Nnobs!
exp

[
−N

(
~λ
)]

(85)

where

Nndet

(
~λ
)
≡
∫
{x<threshold}

dx d~θ p
(
x | ~θ

) dN

d~θ

(
~λ
)
. (86)

We can then marginalise over the unknown number of unobserved events to obtain

p
({
~θi

}
, {xi} | ~λ

)
∝
[
Nobs∏
i=1

p
(
xi | ~θi

) dN

d~θi

(
~λ
)]

exp
[
−Ndet

(
~λ
)]
. (87)

We can now introduce the overall rate in the Universe, N , by writing dN/d~θ = Np(~θ|~λ).
Then

Ndet(~λ) = N

∫
x>threshold

∫
p(x|~θ)p(~θ|~λ)d~θdx = Nps(~λ). (88)

Setting a scale-invariant prior on N (which states that the number of detected events does
not convey information about the unknown parameters of the population), p(N) ∝ 1/N we
can marginalise N out of the likelihood and recover Eq. (83).

5.9.2 Examples of hierarchical models

We finish this section with two examples of Bayesian hierarchical models.

Example 1: Salmon fishery In a given year, several fish hatcheries located along rivers
in Washington state, USA raise coho salmon from eggs to a juvenile stage. Each hatchery
releases a batch of juvenile fish into the rivers. The fish then travel to the ocean and some
of them return to the hatchery 3 years later. The probability that a juvenile salmon returns
varies between hatcheries due to different hatchery practices and river conditions at the point
of release. We construct a hierarchical model for this as follows

• Suppose there are J fisheries and nj salmon observed at fishery j.

• The data for an individual observation, xji, of the i’th salmon at fishery j is Bernoulli
(salmon returned or did not return), with parameter pj, where j labels the fishery. The
data for the total number of returning salmon at site j, xj, is Binomial with parameters
(nj, pj).

• We assume that the pj’s are drawn from some common global distribution and use the
conjugate prior of Beta(a, b).

• The parameters a and b are not known and fixed as in the usual case, but these are
unknown quantities of interest as they characterise the variability in the population.
These are the hyperparameters of the prior on pj.

• We define a suitable hyperprior p(a, b) on the hyperparameters, for example a Gamma
prior.
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• The joint posterior on the set ({pj}, a, b) is

p({pj}, a, b|x) ∝ p(x|{pj})
[

J∏
j=1

p(pj|a, b)
]
p(a, b).

Note that the hyperprior on the hyperparameters appears only once as these parameters
are common to all of the individual observations of fisheries.

• The marginal distribution on the hyperparameters (a, b) can be found by marginalising
over the {pj}’s

p(a, b|x) ∝ p(a, b)
J∏
j=1

B (a+ xj, b+ nj − xj)
B(a, b)

.

• Marginals on individual pj’s can be found in a similar way.

Example 2: Gravitational wave cosmology In August 2017 the LIGO/Virgo gravi-
tational wave detectors observed gravitational waves from the inspiral and merger of a binary
neutron star for the first time, GW170817. There was both a short gamma ray burst and
a kilonova associated with this event, which allowed the unique identification of the host
galaxy, NGC 4993, and hence the recessional velocity (redshift) of the host. The gravi-
tational waves provide a measurement of the luminosity distance of the source. The rate
of expansion of the Universe as a function of distance is a key observable for constraining
cosmological parameters. The relationship is linear at low distances and the constant of
proportionality is called the Hubble constant,

v = cz = H0d,

where v is the recessional velocity due to the expansion of the Universe, z is the corre-
sponding redshift, H0 is the Hubble constant and d is the luminosity distance. At low dis-
tance/redshift, the peculiar velocity of individual galaxies, relative to the overall expansion
of the Universe (the “Hubble flow”) is significant and so the observed recessional velocity,
vr, must be corrected by writing vr = H0d+vp. Observations of galaxies provide an estimate
of the smoothed peculiar velocity field, 〈vp〉. We are interested in inferring the value of the
Hubble constant and build a hierarchical model as follows.

• The observed gravitational wave data, xGW, depends on the waveform of the source,
which in turn depends on the source parameters. Most of these are not of interest,
denoted ~λ, and so we can marginalise them out, but we treat distance d and inclination,
ι, separately

p(xGW | d, cos ι) =

∫
p(xGW | d, cos ι, ~λ) p(~λ)d~λ. (89)

• The measured recessional velocity, vr, depends on the true recessional velocity, which
depends on the peculiar velocity, vp, and the Hubble redshift, H0d. Representing the
electromagnetic measurement uncertainty as a Normal distribution we have

p (vr | d, vp, H0) = N
[
vp +H0d, σ

2
vr

]
(vr) (90)
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• The measured smoothed peculiar velocity field at the location of the host galaxy de-
pends on the true peculiar velocity there (and perhaps also on other quantities, but
we suppress other dependencies here)

p (〈vp〉 | vp) = N
[
vp, σ

2
vp

]
(〈vp〉) . (91)

• The combined likelihood for the observations of xGW, 〈vp〉 and vr is

p(xGW, vr, 〈vp〉 | d, cos ι, vp, H0) =

1

Ns(H0)
p(xGW | d, cos ι) p(vr | d, vp, H0) p(〈vp〉 | vp). (92)

Here the factor Ns(H0) is the selection effects factor discussed earlier, which corrects
for the fact that we only analyse events that exceed some threshold in the gravitational
wave detector

Ns(H0) =

∫
detectable

d~λ dd dvp dcos ι dxGW dvr d〈vp〉

×
[
p(xGW | d, cos ι, ~λ) p(vr | d, vp, H0)

× p(〈vp〉 | vp) p(~λ) p(d) p(vp) p(cos ι)
]
, (93)

At the time of GW170817 the horizon for detection of binary neutron stars by the
LIGO/Virgo detectors was much smaller (∼ 100Mpc) than the distance to which the
kilonova radiation could have been confidently observed (∼ 400Mpc). This means
that gravitational wave selection effects were dominant. As these depend directly on
the luminosity distance, the dependence on H0 is a higher order correction and so
the selection function was approximately independent of H0. A correct treatment of
election effects will become increasingly important as the LIGO horizon increases in
the future.

• We define priors on H0, d, vp and cos ι. These are independent and so we write down
a product prior

p(d, cos ι, vp, H0) = p(d)p(cos ι)p(vp)p(H0).

We use flat priors on cos ι and vp, a volumetric prior on d, p(d) ∝ dVc/dd, where Vc
is the comoving volume. We leave p(H0) unspecified, but note that the analysis in
Abbott et al. (2017) used a scale-invariant prior p(H0) ∝ 1/H0.

• We have now fully specified the hierarchical model. A graphical representation of this
model is given in Figure 13. The posterior can now be found as

p(H0, d, cos ι, vp | xGW, vr, 〈vp〉)

∝ p(H0)

Ns(H0)
p(xGW | d, cos ι) p(vr | d, vp, H0)

× p(〈vp〉 | vp) p(d) p(vp) p(cos ι), (94)
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Figure 13: Graphical model for the Hubble constant measurement with gravitational wave
observations of binary neutron stars. Figure reproduced from Abbott et al., Nature Lett.
551 85 (2017).

• This posterior can be marginalised over d, cos ι and vp to give

p(H0 | xGW, vr, 〈vp〉) ∝
p(H0)

Ns(H0)

∫
dd dvp dcos ι

× p(xGW | d, cos ι) p(vr | d, vp, H0)

× p(〈vp〉 | vp) p(d) p(vp) p(cos ι) . (95)

This marginalised posterior is shown in Figure 14.

• If we make subsequent observations of binary neutron star mergers with counterparts,
indexed by a superscript i = 1, . . . , N , we can combine these

p(H0 | {xiGW, v
i
r, 〈vp〉i}) ∝

p(H0)

NN
s (H0)

N∏
i=1

[∫
dd dvp dcos ι

× p(xiGW | d, cos ι) p(vir | d, vp, H0)

× p(〈vp〉i | vp) p(d) p(vp) p(cos ι)
]
. (96)

Note that, as in the previous example, the prior on the common hyperparameters,
p(H0), occurs only once. The selection effect correction appears once for every obser-
vation.
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Figure 14: Posterior on the Hubble constant derived from GW170817. Figure reproduced
from Abbott et al., Nature Lett. 551 85 (2017).
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6 Bayesian Sampling

As emphasised before, the output of Bayesian inference is a posterior probability distribution
that encodes our state of knowledge about the parameters of the model based on the observed
data and prior information. In certain contexts, for example when using conjugate models,
the posterior can be written down in a closed analytic form and used directly for subsequent
computation of derived quantities of interest. However, most often the posterior is not known
in closed form. There are three approaches to inference in such situations. One is to use a
Normal approximation to the posterior, the second is to use brute force integration methods
and the third is to draw a set of representative samples from the posterior for us in Monte
Carlo integration over the posterior.

6.1 Posterior computation: Bayesian Central Limit Theorem

The Bayesian Central Limit Theorem can be used to approximate posteriors, in the

limit that the number of observations, n→∞. Suppose that we have samples X1, . . . , Xn
iid∼

p(x | θ) and that the prior, p(θ), and likelihood, p(x|θ), are both twice differentiable near

θ̂post, the location of the peak of the posterior distribution. Then, for n → ∞, we can
approximate

p(θ | x) ∼ N
(
θ̂post, [I

post(θ,x)]−1
)

where

Ipost(θ,x) = −
[

∂2

∂θ∂θT
log p(θ | x)

]
θ=θ̂post

.

The Bayesian central limit theorem follows from the usual central limit theorem. It used to
be widely used due to the computational cost of generating posterior samples. However, it
relies on the number of observations being large, which is often difficult to ensure in practice.
Therefore, its use is no longer so widespread since computers are now sufficiently powerful
to enable the generation of large numbers of posterior samples relatively cheaply.

6.2 Posterior computation: numerical integration

In low numbers of dimensions, posterior integrals can be computed using standard numerical
integration techniques. There is a large literature on approximating integrals in various ways.
The simplest is a grid approach, where the posterior is evaluated at a set of regularly spaced
points in the space of waveform parameters. This can be thought of as a type of sampling
approximation, where the samples are on a uniform grid. Direct integration rapidly becomes
prohibitively expensive as the dimensionality of the model parameter space increases. In
addition, it can be inefficient, if the posterior has relatively compact support within the
space of allowed values, since many of the grid points will be in regions with low posterior
weight.
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6.3 Posterior computation: direct sampling methods

As discussed before, sampling methods attempt to generate a set {θ1, . . . ,θM}, from the
posterior, which can be used to approximate integrals over the posterior∫

f(θ) p(θ|x) dθ ≈ 1

M

M∑
i=1

f(θi).

Sampling methods can be direct or stochastic. Direct methods draw samples directly (or
nearly directly) from the target probability distribution. Stochastic methods use Markov
chain Monte Carlo methods to generate a sequence of samples that are drawn form the
target distribution.

6.3.1 Method of inversion

The method of inversion is a simple application of the probability integral transformation.
If we denote by F the cumulative distribution function of some random variable X, then
the random variable F (X) follows a U [0, 1] distribution. Therefore, if we can analytically
compute the inverse of the cumulative distribution function, we can generate samples form
X by generating samples from a uniform distribution. If

F (x) = P(X ≤ x)

and it has inverse F−1 then the algorithm is simply

1. Generate u ∼ U [0, 1].

2. Compute x = F−1(u).

Example: exponential distribution with parameter r Suppose we want to draw
X ∼ Exp(r). The pdf of the exponential distribution is

p(x|r) = r exp(−rx)

which has cumulative density function

F (X) =

∫ X

0

r exp(−rx)dx = 1− exp(−rX).

The inverse can be found as

u = F (x) ⇒ x = F−1(u) = −1

r
ln(1− u).

Samples generated by applying this inverse to U [0, 1] samples are shown in Figure 15.

6.3.2 Rejection sampling

Rejection sampling draws samples from a distribution that can be directly sampled and then
discards a subset of them that do not match the desired distribution. The simplest rejection
sampling algorithm draws uniform samples from a box that encloses the distribution. Sup-
pose that we want to draw samples θ1, . . . , θn from a probability distribution with pdf p(θ)
and that the pdf has compact support, so p(θ) = 0 if θ /∈ [a, b]. Suppose additionally that
the pdf at the mode of the probability distribution is M = max[p(θ)]. Rejection sampling
proceeds as follows
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Figure 15: Histogram of samples drawn from the Exp(1) distribution using the method of
inversion. The pdf of the exponential distribution is shown as a line for comparison.

1. Draw θ ∼ U [a, b].

2. Draw y ∼ U [0,M ].

3. If y ≤ p(θ), accept θ as a sample from p(θ). Otherwise return to step 1.

Example: beta distribution We want to draw samples from a Beta(3, 2) distribution.
This has compact support on the interval [0, 1] and the maximum value of the pdf is M =
16/9 (EXERCISE). In Figure 16 we illustrate this procedure by indicating which of the first
50 samples drawn in this way are rejected or accepted. In Figure 19 we show a histogram
of the accepted samples in the first 1000 draws, which illustrates that the distribution of
samples does follow the Beta(3, 2) distribution as desired.

The box rejection sampling procedure does not work at all when the support of the target
distribution is unbounded. In addition, it can be very inefficient for compact distributions
with long tails. An alternative approach is to draw samples from an easy-to-sample distribu-
tion, g(θ), that is similar to the target distribution p(θ). First we find a number M such that
Mg(θ) ≥ p(θ) ∀θ, i.e., we require Mg(θ) to contain the target distribution. The algorithm
is then

1. Draw θ ∼ g(θ).

2. Draw y ∼ U [0, 1].

3. If y ≤ p(θ)/(Mg(θ)), accept θ as a sample from p(θ). Otherwise return to step 1.

Trial samples are taken uniformly from within the region between the curve Mg(θ) and the
θ axis. Samples that fall in the region between p(θ) and Mg(θ) are rejected. Therefore we
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Figure 16: Accepted (green plusses) and rejected (red crosses) samples in the first 50 draws of
the rejection sampling algorithm used to simulate the Beta(3, 2) distribution. Only samples
that lie within the target pdf are accepted.
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Figure 17: Histogram of the accepted samples in 1000 iterations of the rejection sampling
algorithm. We compare the distribution to Beta(3, 2), which is the target distribution.
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Figure 18: Accepted (green plusses) and rejected (red crosses) samples in the first 50 draws
of the rejection sampling algorithm to simulate draws from a half-Normal distribution. Only
samples that lie within the target pdf are accepted.

make the efficiency (i.e., the fraction of samples that are accepted) as large as possible by
making the choice

M = sup
θ

(
p(θ)

g(θ)

)
.

Example: half-Normal distribution We want to draw samples from the half-Normal
distribution with pdf

p(θ) =

{ √
2
π
e−

θ2

2 for x ≥ 0

0 otherwise
.

We will take g(θ) = exp(−θ), i.e., the exponential distribution with rate 1. We find M from

M = sup
θ

(
p(θ)

g(θ)

)
= sup

θ>0

(√
2

π
exp

[
−1

2
(θ − 1)2 +

1

2

])
=

√
2

π
e

1
2 .

In Figure 18 we show the samples accepted and rejected during the first 50 iterations of
the algorithm, and in Figure ?? we show a histogram of the accepted samples during 1000
iterations of the algorithm. We see that the histogram is correctly approximating the desired
distribution.

6.3.3 Importance sampling

Rejection sampling can be effective and easy to implement, but it is not always possible
to find an easy-to-sample target distribution that closely matches the target distribution.
Additionally effort is wasted drawing samples and evaluating the posterior at points which
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Figure 19: Histogram of the accepted samples in 1000 iterations of the rejection sampling
algorithm. We compare the distribution to the target distribution, which in this case is a
half-Normal distribution with mean 0 and variance 1.

are subsequently discarded as rejected samples. Importance sampling attempts to address
the latter problem by using all samples.

Importance sampling uses an easy-to-sample reference distribution g(θ) as before, but
now this is not rescaled, the only stipulation is that the support is common to that of the
target distribution, i.e., if p(θ) > 0 then g(θ) > 0. No samples are discarded. Instead the
samples are defined importance weights via

wi =
p(θ)

g(θ)

and integrals over the target distribution are approximated by weighted averages over the
samples ∫

f(θ)p(θ)dθ ≈ 1

M

M∑
i=1

wif(θi).

It is straightforward to see that

Eg(wif(θi)) =

∫
w(θ)f(θ)g(θ)dθ =

∫
p(θ)

g(θ)
f(θ)g(θ)dθ =

∫
f(θ)p(θ)dθ = Ep(f(θ))

so the importance sampling estimate is unbiased. However

varg(wif(θi)) =

∫
w2(θ)f 2(θ)g(θ)dθ − [Ep(f(θ))]2 =

∫
p(θ)

g(θ)
f 2(θ)p(θ)dθ − [Ep(f(θ))]2

= Ep
(
p(θ)

g(θ)
f 2(θ)

)
− [Ep(f(θ))]2. (97)
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We see that the importance sampling estimate can suffer from high variance if g(θ) is much
smaller than p(θ) in regions where the function of interest has significant support.

Note that the above assumes that the normalisation of the target distribution is known,
but this is not always the case when sampling from posterior distributions due to the difficulty
of computing the Bayesian evidence. If the posterior is not normalised the weights can be
renormalised as

w̃i =
wi∑M
j=1wj

.

The results on the mean and variance are now only approximate, but are valid asymptotically.

Example: Cauchy distribution Suppose we have a standard Cauchy distribution with
pdf

p(θ) =
1

π(1 + θ2)

and want to compute P(θ > 2). We can sample from the distribution g(θ) = 2/θ2I(θ > 2)
using the method of inversion. This has the same support as the portion of p(θ) of interest.
We define the importance weights

wi =
θ2
i

2π(1 + θ2
i )

and then compute

p̂>2 =
1

M

M∑
i=1

wi

since we are interested in P(θ > 2) which is the integral of I(θ > 2), but this equal to 1
throughout the region where g(θ) has support. Note that in this case it would be wrong to
renormalise the weights since then we would compute the probability as 1. As an exercise,
verify that using the above weights in the usual sampling estimate gives the expected result.

In Figure 20 we show the convergence of the importance sampling estimate of P(θ > 2) as
a function of the number of importance samples. We see that it converges much faster than
if we used Monte Carlo draws from the Cauchy distribution itself. The correct probability
is π/2− tan−1(2)/π = 0.14758.

6.3.4 Sampling importance resampling

Sampling importance resampling is a simple extension of importance sampling that uses the
importance samples to generate samples approximately from the target distribution. Given
M importance samples, {θ1, . . . , θM}, the importance weights are computed and normalised
as described above. Then M samples, {φ1, . . . , φM} are drawn, with replacement, from
the original set using the normalised weights as probabilities. Integrals over the target
distribution can then be approximated by∫

f(θ)p(θ)dθ ≈ 1

M

M∑
i=1

f(φi).

Sampling importance resampling is a form of particle filtering. One problem that it can
suffer form is particle depletion, where a small number of samples carry the majority of
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Figure 20: Importance sampling estimate of P(θ > 2) for the standard Cauchy distribution
as a function of number of samples (blue line), compared to Monte Carlo estimate using
direct samples from the Cauchy distribution (yellow line).

the weight and therefore only a small number of points are represented repeatedly in the
final data set. Particle depletion leads to poor estimates of derived quantities.

Example: Cauchy distribution We use sampling importance resampling to generate
samples from the Cauchy distribution with θ > 2 using the samples generated for the example
in the previous section. A histogram of these values is shown in Figure 21, where they are
compared to the target distribution, which is a truncated Cauchy distribution.

6.4 Posterior computation: Markov chain Monte Carlo

Direct sampling methods suffer form the problem of dimensionality. They are typically
easy to implement in one dimension, but become increasingly challenging, inefficient or
impossible to implement as the number of dimensions increases. In higher dimensions it is
more common to use stochastic methods, in which a sequence of samples is constructed that
has a distribution that follows the target distribution. Typically this is done using Markov
chain Monte Carlo algorithms.

A Markov Chain is a sequence of random numbers, θ1, θ2 . . ., such that the value of
θn+1 depends only on the previous values, θn, and not on earlier numbers in the sequence. A
Markov chain can be simulated using a transition kernel, K(θn+1|θn), which is a conditional
probability distribution for θn+1 given the value of θn. The transition kernel uniquely defines
the Markov chain. If we assume the Markov chain is aperiodic and irreducible then the
distribution of samples in the Markov chain will converge to a stationary distribution,
which is independent of the initial starting state of the chain. In Bayesian inference, the
goal is to construct a Markov chain such that the stationary distribution is the posterior
distribution, p(θ|x).
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Figure 21: Histogram of 1000 sampling importance resampling samples for the Cauchy distri-
bution in the region θ > 2. These were generated from the importance samples constructed
in the example in the last section. The line shows the expected distribution, which is the
truncated standard Cauchy distribution.

A Markov chain with transition kernel K(θn+1|θn) is said to satisfy detailed balance
for a distribution π(θ) if

π(θ)K(φ|θ) = π(φ)K(θ|φ) ∀φ, θ,
in which case π(θ) is the stationary distribution of the Markov chain. Enforcing detailed
balance in the Markov chain, for π(θ) = p(θ|x), will ensure we generate samples from the
posterior distribution.

There are two widely used approaches to construct Markov chains satisfying detailed
balance with a particular stationary distribution — Gibbs sampling and the Metropolis-
Hastings algorithm.

6.4.1 Gibbs Sampling

Gibbs sampling for multi-variate probability distributions works by sampling sequentially
from full conditional distributions on each parameter given the current state of the other
parameters. Algorithmically it works as follows. We suppose that the distribution of interest,
p(θ|x), depends on a multi-dimensional parameter vector, (θ) = (θ1, θ2, . . . , θp). We use (θ)k,
θki to denote the value of the full parameter vector and its i’th component at iteration k of
the algorithm. We denote by θ(i) the vector of all parameter values except the i’th and use
p(θi|θ(i),x) to denote the full conditional distribution of θi, given the values of all the other
components and the data. If the value of the Markov chain at step t is θt, then the value at
step t+ 1 is obtained via

• Sample θt+1
1 from p(θ1|θt2, θt3, . . . , θtp,x).

• Sample θt+1
2 from p(θ2|θt+1

1 , θt3, . . . , θ
t
p,x).
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• . . . . . . . . . . . .

• Sample θt+1
i from p(θi|θt+1

j for j < i and θtj for j > i,x).

• . . . . . . . . . . . .

• Sample θt+1
p from p(θp|θt+1

1 , . . . , θt+1
p−1,x).

This set of sequential updates is repeated at each iteration of the algorithm to generate a
set of samples from the target distribution.

The transition kernel in Gibbs sampling is

KG(θt+1|θt) =
k∏
i=1

p(θi|θt+1
j for j < i and θtj for j > i,x)

which satisfies detailed balance with target distribution p(θ|x).

6.4.2 Metropolis-Hastings algorithm

In the Metropolis-Hastings algorithm all the parameters of the model are typically updated
simultaneously. This is achieved using a proposal distribution, q(φ|θ), to propose a new
point φ, given the current parameter values θ. The algorithm is as follows

1. Initialise θ0 by drawing from a distribution of starting vlaues (often the prior can be
used for this).

2. At step t:

(a) Propose a new point φ ∼ q(φ|θt−1).

(b) Compute the acceptance probability

α = min

(
1,

p(φ|x)q(θt−1|φ)

p(θt−1|x)q(φ|θt−1)

)
.

(c) Draw u ∼ U [0, 1]. If u < α, set θt = φ, otherwise set θt = θt−1.

3. Repeat until the desired number of iterations, T , have been completed.

the initial version of this algorithm, due to Metropolis, used symmetric proposal distribu-
tions and so that factor cancels out of the acceptance probability. A subsequent paper by
Metropolis and Hastings generalised the result to non-symmetric proposals.

It can be readily verified in this case as well that the Markov chain constructed in this
way satisfies detailed balance with target distribution equal to the posterior p(θ|x).

There are a few special cases of the Metropolis-Hastings algorithm

• The Metropolis Algorithm This is the case described above where the proposal is
symmetric, q(φ|θ) = q(θ|φ), and the acceptance probability reduces to

α = min

(
1,

p(φ|x)

p(θt−1|x)

)
.
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• Random Walk Metropolis If we use q(φ|θ) = f(θ − φ), with f some function
satisfying f(y) = f(−y), then the kernel driving the chain is a random walk. This is a
symmetric proposal and so the accpetance probability is as in the Metropolis Algorithm
above.

• The Independence Sampler If we take q(φ|θ) = f(φ), the candidate value is
independent of the current value. The acceptance probability is

α = min

(
1,
w(φ)

w(θ)

)
where w(θ) = p(θ|x)/f(θ).

• Single-updates Individual parameters of the parameter vector can be updated se-
quentially in the Metropolis-Hastings algorithm in the same way they are during the
Gibbs sampling algorithm. At step t we sequentially propose updates, φj, to each
component, θj, of the parameter vector in turn. After updating parameter j, the new
parameter vector is (θt+1

1 , . . . θt+1
j−1, θj,

t+1 θtj+1, . . . , θ
t
p). The new value, θt+1

j is chosen by
the algorithm

1. Propose a new candidate value φj ∼ q(φj|θtj) and set φj = (θt+1
1 , . . . , θt+1

j−1, φj, θ
t
j+1, . . . , θ

t
p).

2. Evaluate the acceptance probability

α = min(1, A), where A =
p(φj|x)q(θtj|φj)

p(θtj|x)q(φj|θtj)
=
p(φj|θt(j),x)q(θtj|φj)

p(θtj|θt(j),x)q(φj|θtj)

3. Draw u ∼ U [0, 1]. If u < α, set θt+1
j = φj, otherwise set θt+1

j = θtj.

6.4.3 MCMC diagnostics

The Markov chain is only guaranteed to converge to the stationary distribution asymptoti-
cally so it is natural to ask how many samples are needed before the sample is representative
of the posterior. The first issue to address is burn-in. A Markov chain retains some mem-
ory of its initial state for a number of iterations. If the initial sample is in a region of low
probability in the stationary distribution, then the first samples will typically not be very
characteristic of the stationary distribution. These initial samples should be discarded and
samples only retained after the initial burin-in period used for inference. Typically between a
few hundred and a few thousand burn-in samples are required and it can be diagnosed using
a trace plot, which is a plot of the parameter value in the chain as a function of iteration
number. Initially the trace plot will show a trend as the chain moves toward parameter
values with high posterior support. Once the chain is sampling properly, the values will
oscillate back and forth. This is illustrated in Figure 22. The trace plot allows the burn-in
period to be identified and removed, and is also a useful diagnostic of the performance of
the algorithm. Chains that are moving back and forth rapidly are sampling well from the
posterior.

MCMC samples are used to produce Monte Carlo estimates of parameters of interest. If
the samples were independent draws from the posterior then these estimates are unbiased
and would have a variance that scales like σ2/M , where σ2 is the variance of a single sample
and M is the number of samples. This could in principle be used to estimate how many
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Figure 22: Trace plot for burn-in period of a chain. Initially the chain moves form the
starting point to the region of high probability density, so there is a tendency to move in a
particular direction. Once the chain reaches the correct region it oscillates back and forth
in the region of high posterior support.
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samples are needed to achieve a certain target precision on a quantity of interest. However,
MCMC samples are not independent. This modifies the variance estimate to

σ2 = varp(θ) + 2
∞∑
k=2

cov(θ1, θk).

This is difficult to compute in practice, so what is usually done is to generate m different
chains of length M , estimate the value of the quantity of interest in each one, f̄1, . . . , f̄m,
compute the value using the pooled samples from all chains, f̄ , and then construct the batch
means estimate

σ̂2 =
T

m− 1

m∑
i=1

(f̄i − f̄)2.

The estimated Monte Carlo error in f is then σ̂2/n.

Correlation in MCMC samples can also be estimated using the autocorrelation func-
tion (ACF). The lag-k autocorrelation coefficient or autocorrelation at lag-k is cov(θi, θi+k)
and computed via

ρk =

∑N−k
i=1 (θi − θ̄)(θi+k − θ̄)∑M

i=1(θi − θ̄)2

where θ now denotes one parameter of the target distribution, and θ̄ is the mean of that
parameter in the chain. Looking at ACF plots is another useful diagnostic of MCMC per-
formance. Examples of good, bad and normal ACF plots are given in Figure 23.

If MCMC chains have very high lags, most likely they are not taking big enough jumps
in parameter space and so the size of proposed jumps should be increased. It is typical
to monitor acceptance rates when using the Metropolis-Hastings algorithm and a target
acceptance rate is used to adjust proposed jump sizes. If proposed jumps are too small, the
acceptance rate will be high but there will also be high autocorrelation between samples. If
the proposed jumps are too large, the acceptance rate will be low, but those samples that
are accepted will show very low autocorrelation.Ultimately we care about maximising the
rate at which we obtain new independent samples. This can be estimated by tracking the
effective sample size

ESS =
M

1 + 2
∑∞

k=1 ρk

where M is the number of samples in the chain. It has been shown that, under certain
assumptions, the optimal rate of obtaining new effective samples is achieved by aiming to
have an acceptance rate around 23.4%.

The final diagnostic we will mention here is the use of multiple chains. For complex
probability distributions that have many modes it is possible for Markov chains to get stuck
sampling from only one of them. Chains starting from different points in parameter space
may end up exploring different modes. As a diagnostic of this kind of behaviour, it is good
practice to run a handful of runs, starting at different points in parameter space. We can
be confident in the final results once the different chains are producing samples that are
consistent with one another. This consistency can be quantified using the Gelman-Rubin
statistic.

Suppose we have m independent chains and have discarded the initial burn-in samples
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Figure 4: Posterior distributions and trace plots for the Bayesian model fit to the rock permeability data.
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Figure 5: Autocorrelation function plots for the fit to the rock permeability data.

9

Figure 23: Examples of plots of the autocorrelation function. This should decline to numbers
close to 0 for short lags. In the left hand plot, the ACF is still above 0.8 at a lag of 100,
indicating highly correlated samples, which is not desirable. In the middle plot we show an
ideal example where the ACF is already close to zero at lag of 1, indicating a high level of
independence in the samples. The right hand plot is a typical example of MCMC chains
that are sampling well. The ACF falls to low values for lags of a few.
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to leave chains of length N . We calculate the within chain variance

W =
1

m

m∑
j=1

1

N − 1

N∑
i=1

(θij − θ̄j)2

where θij is the i’th sample in the j’th chain. We similarly define the between chain variance

B =
N

m− 1

m∑
j=1

(θ̄j − ¯̄θ)2, where ¯̄θ =
1

m

m∑
j=1

θ̄j.

Note that we are assuming that θ is a one-dimensional parameter, which could be one
component of a multi-dimensional parameter vector. The variance in this parameter can be
computed as

var(θ) =

(
1− 1

N

)
W +

1

N
B

from which the potential scale-reduction factor can be computed

R̂ =

√
var(θ)

W
.

Values of R greater than about 1.1 or 1.2 indicate that the chains are not yet converged.

6.4.4 Speeding up MCMC

MCMC can be made faster by a good choice of the proposal distribution. Proposal distribu-
tions that are well approximated to the form of the target distribution are to be preferred.
As well as tuning the proposal distribution, accelerated convergence can be achieved using
annealing. The idea of annealing is to transform the posterior surface as

p(θ|x)→ [p(θ|x)]β , where β =
1

kT
.

As T →∞ the new distribution becomes flatter and flatter, so the contrast in probabilities
between different points is reduced. This means that moves proposed in a Metropolis-
Hastings algorithm are more likely to be accepted. Figure 24 shows the effect of the annealing
transformation on the probability distribution being sampled as the temperature increases.

There are two common applications of annealing. In simulated annealing the tem-
perature is gradually changed as the initial phase of the run progresses, according to some
scheme, for example, a linear decrease with iteration number. The idea is that in the early
phase the chain explores the parameter space widely and rapidly, identifying areas of higher
posterior density. As the temperature decreases the chain gets trapped in a region of high
posterior probability, hopefully the primary mode of the distribution. The simulated anneal-
ing phase does not produce useful samples, since detailed balance is satisfied, but after the
simulated annealing phase, the chain will evolve as normal and return valid samples from
the posterior.

The other use of annealing is parallel tempering. In parallel tempering, a number
of chains are evolved simultaneously at different temperatures. At each iteration, a given
chain will update its parameters as normal, but with a certain probability an interchange
is proposed, in which the states of two chains (usually neighbouring in temperature) will
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Figure 24: Effect of annealing on the target probability distribution.

be exchanged. If the two chains are labelled i and j, have temperatures Ti and Tj, and
current parameter values θi and θj, then the appropriate acceptance probability for the
swap θi ↔ θj is

α = min

(
1,

[
p(θj|x)

p(θi|x)

] 1
Ti
[
p(θi|x)

p(θj|x)

] 1
Tj

)
.

The idea of parallel tempering is that higher posterior density regions of the parameter
space that the widely-exploring high temperature chains identify, propagate down to lower
temperature chains, which explore them thoroughly. Efficiency is dependent on the difference
in the temperatures of neighbouring chains, so the number of chains and their spacing must
be tuned for each given problem.

6.5 Posterior computation: variable model dimension

In some circumstances we might be interested in fitting multiple different models to the
data simultaneously. the most common situation is when the total number of parameters
needed to describe the data is unknown. In a gravitational wave context this arises when the
total number of sources present in the data set is unknown, e.g., for the LISA gravitational
wave detector. In these circumstances one can still construct Markov chains, but now these
chains can move between different models. The fraction of samples that the chain spends in
each model is proportional to the evidence for that model and, in the case of models that
differ only in the total number of sources, the evidences give the relative probabilities for the
unknown number of sources in the data.

The most widely used algorithm for fitting multiple models is reversible jump Markov
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chain Monte Carlo (RJMCMC). RJMCMC generates a Markov chain such that at each
step either an update within the model is proposed, or, with a certain probability, a jump
to an alternative model is proposed. Usually the jumps are between models that differ by
only one source if that is the type of model hierarchy being considered. When proposing a
jump to a new model, with parameters θ′, the values of the parameters of that model must
also be proposed. This is achieved by generating a set of random numbers u from some
distribution q(u). In order to ensure reversibility we imagine that these random numbers
are part of the parameters of the model, but because they are random we only need to
generate them when they are used in a between-model jump. Similarly we may need some
random variables u′ to propose jumps back from the new model space to the original model
parameters θ. The dimensionality of the joint space (θ,u) must equal that of (θ′,u′) and
there will be a deterministic, invertible mapping between the two. In the case of nested
models, the reverse jump might just delete a set of parameters and so the dimensionality of
u′ is 0. However, if the particular source is deleted at random rather than, say, the lowest
SNR source always being deleted, a random variable that selects which source to delete is
required. The generalisation of the acceptance probability for RJMCMC is

α = min

(
1,
p(θ′|x)q(θ′)

p(θ|x)q(θ)

∣∣∣∣∂(θ′,u′)

∂(θ,u)

∣∣∣∣)
where the last term is the Jacobian for the transformation between the two sets of variables.

Example: mixture of Gaussians Suppose that model M1 is a single Gaussian with
mean θ1 and unit variance and model M2 is a mixture of two Gaussians with means θ′1 and
θ′2 and both of unit variance. We have random variables u = (u1, u2) with u1 ∼ N(0, σ2

0)
and u2 ∼ U [0, 1] in the M1 model space and u′ = u′1 ∼ U [0, 1] in the M2 model space. The
random variable u1 gives the value of the mean of the new Gaussian to be added, while u′1
selects which Gaussian to delete in the reverse step. The second random variable u2 ensures
the dimensionality is consistent. We can define the mapping between the parameter spaces
via

θ′1 =

{
θ1 if u2 < 0.5
u1 if u2 ≥ 0.5

θ′2 =

{
u1 if u2 < 0.5
θ1 if u2 ≥ 0.5

u′1 = u2.

and the reverse mapping

θ1 =

{
θ′1 if u′1 < 0.5
θ′2 if u′1 ≥ 0.5

u1 =

{
θ′2 if u′1 < 0.5
θ′1 if u′1 ≥ 0.5

u2 = u′1.

The Jacobian for this transformation is 1 and so the acceptance probability is just

α = min

(
1,
p(θ′|x)q(θ′)

p(θ|x)q(θ)

)
.
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6.6 Evidence computation

As described earlier, the Bayesian evidence is required for model comparison and Bayesian
model selection, but it is difficult to compute accurately using standard MCMC methods.
Nested sampling (Skilling 2004) was developed as an alternative approach, specifically
tuned for evidence computation. It calculates the evidence by transforming the multi–
dimensional evidence integral into a one–dimensional integral that is easy to evaluate nu-
merically. This is accomplished by defining the prior volume X as dX = π(Θ)dDΘ, so
that

X(λ) =

∫
L(Θ)>λ

π(Θ)dNΘ, (98)

where the integral extends over the region(s) of parameter space contained within the iso-
likelihood contour L(Θ) = λ. The evidence integral, Eq. (77), can then be written as

Z =

∫ 1

0

L(X)dX, (99)

where L(X), the inverse of Eq. (98), is a monotonically decreasing function of X. Thus, if
one can evaluate the likelihoods Li = L(Xi), where Xi is a sequence of decreasing values,

0 < XM < · · · < X2 < X1 < X0 = 1, (100)

as shown schematically in Fig. 25, the evidence can be approximated numerically using
standard quadrature methods as a weighted sum

Z =
M∑
i=1

Liwi, (101)

where the weights wi for the simple trapezium rule are given by wi = 1
2
(Xi−1 −Xi+1). An

example of a posterior in two dimensions and its associated function L(X) are also shown
in Fig. 25.

6.6.1 Evidence Evaluation

The summation in Eq. (101) can be performed using a set of ‘active’ (or ‘live’) points. The
algorithm proceeds as follows

• Set the iteration counter to i = 0. Draw N samples from the full prior, π(Θ). The
initial prior volume is X0 = 1.

• Sort the samples in order of likelihood. Denote the lowest likelihood by L0 and remove
the corresponding point from the active set, hence becoming ‘inactive’.

• Draw a new point uniformly from the prior, subject to the constraint that the point has
likelihood L > L0. The prior volume within this iso-likelihood contour is X1 = t1X0,
where t1 follows the distribution P(t) = NtN−1 (i.e., the probability distribution for
the largest of N samples drawn uniformly from the interval [0, 1]).

• For each subsequent iteration, i, repeat the procedure of finding the lowest likelihood,
Li, in the active set and removing the corresponding point, drawing a replacement
point uniformly from within the prior volume with L > Li, and reducing the enclosed
prior volume Xi = tiXi−1.
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(a) (b)

Figure 25: Cartoon illustrating (a) the posterior of a two dimensional problem; and (b) the
transformed L(X) function where the prior volumes Xi are associated with each likelihood
Li.

• Continue until the entire prior volume has been traversed, assessed by some pre-
specified stopping criterion (see section 6.6.2).

The algorithm travels through nested shells of likelihood as the prior volume is reduced. The
prior volume at step i is

logXi =
i∑

j=1

log tj,

which is the sum of i independent, identically distributed random variables and so has a
mean equal to i E[log t] and a variance i var[log t]. A simple calculation gives

E[log t] = −1/N, var[log t] = 1/N2. (102)

After i iterations the prior volume will have shrunk down such that logXi ≈ −(i±
√
i)/N .

So, to evaluate the sum (101), we can take Xi = exp(−i/N).

6.6.2 Stopping Criterion

The nested sampling algorithm should be terminated once the evidence has been computed to
a pre-specified precision. One way to ensure this is to proceed until the evidence estimated at
each replacement changes by less than a specified tolerance. Skilling suggested an alternative,
more robust, condition based on determining an upper limit on the missing portion of the
evidence. By selecting the maximum–likelihood, Lmax, in the set of active points, the largest
evidence contribution that can be made by the remaining portion of the posterior is ∆Zi ≈
LmaxXi, i.e., the product of the remaining prior volume and maximum likelihood value. The
algorithm should stop when this quantity drops below some user–defined value, e.g., 0.5 in
log-evidence.

6.6.3 Posterior Inferences

Once the evidence Z is found, posterior inferences can be easily generated using the final live
points and the full sequence of discarded points, i.e., the points with the lowest likelihood
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(a) (b)

Figure 26: Illustrations of the ellipsoidal decompositions performed by MultiNest. The
points given as input are overlaid on the resulting ellipsoids. 1000 points were sampled
uniformly from: (a) two non-intersecting ellipsoids; and (b) a torus.

value at each iteration i of the algorithm. Each such point is simply assigned the probability
weight

pi =
Liwi
Z . (103)

These samples can then be used to calculate inferences of posterior parameters such as
means, standard deviations, covariances and so on, or to construct marginalised posterior
distributions.

6.6.4 MultiNest Algorithm

The most challenging task in implementing the nested sampling algorithm is drawing sam-
ples from the prior within the hard constraint L > Li at each iteration i. Employing a
naive approach that draws blindly from the prior would result in a steady decrease in the
acceptance rate of new samples with decreasing prior volume (and increasing likelihood).
The MultiNest algorithm tackles this problem through an ellipsoidal rejection sampling
scheme by enclosing the live point set within a set of (possibly overlapping) ellipsoids. A
new point is then drawn uniformly from the region enclosed by these ellipsoids. The num-
ber of points in an individual ellipsoid and the total number of ellipsoids is decided by an
‘expectation–maximization’ algorithm so that the total sampling volume, which is equal to
the sum of volumes of the ellipsoids, is minimized. This allows maximum flexibility and
efficiency. Simple Gaussian-like modes are decomposed into a relatively small number of el-
lipsoids, but modes with complex curving degeneracies are broken up into a relatively large
number of small ‘overlapping’ ellipsoids (see Fig. 26).

This ellipsoidal decomposition scheme also provides a mechanism for mode identification.
Ellipsoids that overlap are regarded as part of the same ellipsoidal chain. The algorithm can
then identify distinct modes with distinct ellipsoidal chains. In panel (a) of Fig. 26 the
algorithm identifies two modes, while in panel (b) it correctly identifies the existence of just
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one single mode, even though a large number of ellipsoids are needed to cover it. Once
distinct modes have been identified, they are evolved independently.

Another feature of the MultiNest algorithm is the evaluation of the global as well as
the ‘local’ evidence values associated with each mode. These evidence values can be used to
calculate the probability that an identified ‘local’ peak in the posterior corresponds to a real
feature.

There are many other nested sampling algorithms around today, including Polychord,
which obtains samples from within the iso-likelihood surface through slice sampling, cp-
nest and dynesty. The latter two samplers form part of the Bilby parameter estimation
software suite for LIGO.
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7 Examples of Bayesian statistics in gravitational wave

astronomy

In this section we will provide some examples of the application of Bayesian statistics in
gravitational wave astronomy. In most cases we will briefly outline what is done, and provide
references where further information can be obtained.

7.1 LIGO Parameter Estimation

Parameter estimation results for sources detected by the LIGO interferometers are obtained
and summarised as posterior distributions using the Bayesian techniques described earlier in
this course. Typically, LIGO parameter estimation results are quoted as posterior medians
and symmetric credible intervals. In this section we will illustrate the ways that the LVC
presents observational results using results from the first LVC Gravitational Wave Transient
Catalogue, GWTC-1 (Abbott et al. (2019), Phys. Rev. X 9 031040). This described the
properties of all events (10 BBH and 1 BNS) observed during the O1 and O2 observing runs.
Figure 27 shows the primary results table from GWTC-1, which summarises parameter
estimation results for all of the events observed by LIGO and Virgo during O1 and O2.

The LVK collaboration has published two additional catalogues since GWTC-1. GWTC-
2 (Phys. Rev. X 11, 021053 (2021), arxiv:2010.14527) describes all the events observed in
O3a, the first half of the O3 observing run. GWTC-3 (arxiv:2111.03606) describes all events
observed up until the end of the O3 observing run in March 2019. The aim of this part of the
notes is to illustrate how the LVLK presents results, and so we use GWTC-1 as the number
of events is somewhat more manageable, but the ways in which results are presented are the
same in all three catalogues.

LIGO/Virgo parameter estimation results in O1 and O2 were computed using the LAL-
Inference software suite, which includes two separate parameter estimation codes. LALIn-
ferenceMCMC is a Markov Chain Monte Carlo code, which generates posterior distributions
using the Metropolis-Hastings algorithm and proposal distributions that are tuned to features
expected in the likelihood for gravitational wave observations of compact binary inspirals.
Further details can be found in

• Röver, C., Meyer, R., and Christensen, N., Bayesian Inference on Compact Binary In-
spiral Gravitational Radiation Signals in Interferometric Data, Class. Quantum Grav.
23, 4895 (2006).

• van der Sluys, M., Raymond, V., Mandel, I., Röver, C., Christensen, N., Kalogera, V.,
Meyer, R., and Vecchio, A., Parameter Estimation of Spinning Binary Inspirals Using
Markov-Chain Monte Carlo, Class. Quantum Grav. 25, 184011 (2008).

LALInferenceNest is a nested sampling algorithm, which obtains candidate values for updates
to the live point set by carrying out short MCMC chains originating at the current lowest
likelihood point in the live point set. Further details can be found in

• Veitch, J., and Vecchio, A., Phys. Rev. D 81, 062003 (2010).

A summary of the LALInference package can be found in
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and calibration have not changed, a reanalysis is valuable
for the following reasons: (i) Parameter estimation analyses
use an improved method for estimating the power spectral
density of the detector noise [53,54] and frequency-depen-
dent calibration envelopes [98]; (ii) we use two waveform
models that incorporate precession and combine their
posteriors to mitigate model uncertainties.
Key source parameters for the ten BBHs and one BNS are

shown in Table III. We quote the median and symmetric 90%
credible intervals for inferred quantities. For BBH coales-
cences, parameter uncertainties include statistical and sys-
tematic errors from averaging posterior probability
distributions over the two waveform models, as well as
calibration uncertainty. Apart from GW170817, all posterior
distributions of GW events are consistent with originating
from BBHs. Posterior distributions for all GW events are
shown in Figs. 4–8. Mass and tidal deformability poste-
riors for GW170817 are shown in Fig. 9. For BBH
coalescences, we present combined posterior distributions
from an effective precessing spin waveform model
(IMRPhenomPv2) [25,26,49] and a fully precessing
model (SEOBNRv3) [27,28,30]. For the analysis of
GW170817, we present results for three frequency-
domain models IMRPhenomPv2NRT [25,26,32,49,99],
SEOBNRv4NRT [29,32,77,99], and TaylorF2 [35,36,
38,100–112] and two time-domain models SEOBNRv4T
[31] and TEOBResumS [33,113]. Details on Bayesian
parameter estimation methods, prior choices, and wave-
form models used for BBH and BNS systems are provided
in Appendix B, B 1, and B 2, respectively. We discuss an

analysis including higher harmonics in the waveform in
Appendix B 3 and find results broadly consistent with the
analysis presented below. The impact of prior choices on
selected results is discussed in Appendix C.

A. Source parameters
The GW signal emitted from a BBH coalescence

depends on intrinsic parameters that directly characterize
the binary’s dynamics and emitted waveform, and extrinsic
parameters that encode the relation of the source to the
detector network. In general relativity, an isolated BH is
uniquely described by its mass, spin, and electric charge
[114–118]. For astrophysical BHs, we assume the electric
charge to be negligible. A BBH undergoing quasicircular
inspiral can be described by eight intrinsic parameters, the
two masses mi, and the two three-dimensional spin vectors
S⃗i of its component BHs defined at a reference frequency.
Seven additional extrinsic parameters are needed to
describe a BH binary: the sky location (right ascension
α and declination δ), luminosity distance dL, the orbital
inclination ι and polarization angle ψ , the time tc, and phase
ϕc at coalescence.
Since the maximum spin a Kerr BH of mass m can

reach is ðGm2Þ=c, we define dimensionless spin vectors
χ⃗i ¼ cS⃗i=ðGm2

i Þ and spin magnitudes ai ¼ cjS⃗ij=ðGm2
i Þ. If

the spins have a component in the orbital plane, then the
binary’s orbital angular momentum L⃗ and its spin vectors
precess [119,120] around the total angular momentum
J⃗ ¼ L⃗þ S⃗1 þ S⃗2.

TABLE III. Selected source parameters of the 11 confident detections. We report median values with 90% credible intervals that
include statistical errors and systematic errors from averaging the results of two waveform models for BBHs. For GW170817, credible
intervals and statistical errors are shown for IMRPhenomPv2NRTwith a low spin prior, while the sky area is computed from TaylorF2
samples. The redshift for NGC 4993 from Ref. [94] and its associated uncertainties are used to calculate source-frame masses for
GW170817. For BBH events, the redshift is calculated from the luminosity distance and assumed cosmology as discussed in
Appendix B. The columns show source-frame component masses mi and chirp massM, dimensionless effective aligned spin χeff , final
source-frame massMf , final spin af , radiated energy Erad, peak luminosity lpeak, luminosity distance dL, redshift z, and sky localization
ΔΩ. The sky localization is the area of the 90% credible region. For GW170817, we give conservative bounds on parameters of the final
remnant discussed in Sec. V E.

Event m1=M⊙ m2=M⊙ M=M⊙ χeff Mf=M⊙ af Erad=ðM⊙c2Þ lpeak=ðerg s−1Þ dL=Mpc z ΔΩ=deg2

GW150914 35.6þ4.7
−3.1 30.6þ3.0

−4.4 28.6þ1.7
−1.5 −0.01þ0.12

−0.13 63.1þ3.4
−3.0 0.69þ0.05

−0.04 3.1þ0.4
−0.4 3.6þ0.4

−0.4 × 1056 440þ150
−170 0.09þ0.03

−0.03 182

GW151012 23.2þ14.9
−5.5 13.6þ4.1

−4.8 15.2þ2.1
−1.2 0.05þ0.31

−0.20 35.6þ10.8
−3.8 0.67þ0.13

−0.11 1.6þ0.6
−0.5 3.2þ0.8

−1.7 × 1056 1080þ550
−490 0.21þ0.09

−0.09 1523

GW151226 13.7þ8.8
−3.2 7.7þ2.2

−2.5 8.9þ0.3
−0.3 0.18þ0.20

−0.12 20.5þ6.4
−1.5 0.74þ0.07

−0.05 1.0þ0.1
−0.2 3.4þ0.7

−1.7 × 1056 450þ180
−190 0.09þ0.04

−0.04 1033

GW170104 30.8þ7.3
−5.6 20.0þ4.9

−4.6 21.4þ2.2
−1.8 −0.04þ0.17

−0.21 48.9þ5.1
−4.0 0.66þ0.08

−0.11 2.2þ0.5
−0.5 3.3þ0.6

−1.0 × 1056 990þ440
−430 0.20þ0.08

−0.08 921

GW170608 11.0þ5.5
−1.7 7.6þ1.4

−2.2 7.9þ0.2
−0.2 0.03þ0.19

−0.07 17.8þ3.4
−0.7 0.69þ0.04

−0.04 0.9þ0.0
−0.1 3.5þ0.4

−1.3 × 1056 320þ120
−110 0.07þ0.02

−0.02 392

GW170729 50.2þ16.2
−10.2 34.0þ9.1

−10.1 35.4þ6.5
−4.8 0.37þ0.21

−0.25 79.5þ14.7
−10.2 0.81þ0.07

−0.13 4.8þ1.7
−1.7 4.2þ0.9

−1.5 × 1056 2840þ1400
−1360 0.49þ0.19

−0.21 1041

GW170809 35.0þ8.3
−5.9 23.8þ5.1

−5.2 24.9þ2.1
−1.7 0.08þ0.17

−0.17 56.3þ5.2
−3.8 0.70þ0.08

−0.09 2.7þ0.6
−0.6 3.5þ0.6

−0.9 × 1056 1030þ320
−390 0.20þ0.05

−0.07 308

GW170814 30.6þ5.6
−3.0 25.2þ2.8

−4.0 24.1þ1.4
−1.1 0.07þ0.12

−0.12 53.2þ3.2
−2.4 0.72þ0.07

−0.05 2.7þ0.4
−0.3 3.7þ0.4

−0.5 × 1056 600þ150
−220 0.12þ0.03

−0.04 87

GW170817 1.46þ0.12
−0.10 1.27þ0.09

−0.09 1.186þ0.001
−0.001 0.00þ0.02

−0.01 ≤ 2.8 ≤ 0.89 ≥ 0.04 ≥ 0.1 × 1056 40þ7
−15 0.01þ0.00

−0.00 16

GW170818 35.4þ7.5
−4.7 26.7þ4.3

−5.2 26.5þ2.1
−1.7 −0.09þ0.18

−0.21 59.4þ4.9
−3.8 0.67þ0.07

−0.08 2.7þ0.5
−0.5 3.4þ0.5

−0.7 × 1056 1060þ420
−380 0.21þ0.07

−0.07 39

GW170823 39.5þ11.2
−6.7 29.0þ6.7

−7.8 29.2þ4.6
−3.6 0.09þ0.22

−0.26 65.4þ10.1
−7.4 0.72þ0.09

−0.12 3.3þ1.0
−0.9 3.6þ0.7

−1.1 × 1056 1940þ970
−900 0.35þ0.15

−0.15 1666

B. P. ABBOTT et al. PHYS. REV. X 9, 031040 (2019)

031040-12

Figure 27: Parameter estimation results summary from the first Gravitational Wave Tran-
sient Catalogue published by the LIGO/Virgo collaboration (Phys. Rev. X 9 031040 (2019)).
Results are presented as the median and 90% symmetric credible interval of the Bayesian
posterior distribution.

• Veitch, J., et al., Parameter Estimation for Compact Binaries with Ground-Based
Gravitational-Wave Observations Using the LALInference Software Library, Phys. Rev.
D 91, 042003 (2015).

and the version used in the analysis of the O2 events can be downloaded from

• https://git.ligo.org/lscsoft/lalsuite/tree/lalinference o2 .

From O3 onwards, an additional parameter estimation code, Bilby, was used to obtain
posterior distributions for LIGO/Virgo detections. This code uses generic freely available
Bayesian sampling codes to draw samples from the posterior distribution, such as dynesty
and ptmcmc. The rest of the code consists of wrappers and functions to compute the correct
likelihood to feed to the sampling codes. The description of the software can be found in

• Ashton, G., et al. (2019), Astrophys. J. Supp. 241, 27

and the software can be downloaded from

• https://git.ligo.org/lscsoft/bilby

As well as providing tables summarising the median and symmetric credible intervals
for the observed sources, LIGO papers typically include plots of the full Bayesian posterior
distributions. These take various forms. Two-dimensional joint posterior distributions are
often given for pairs of parameters that are correlated, such as the chirp mass and mass
ratio or the final mass and spin of the remnant black hole produced by the merger or the
sky location of the merger event. Examples of two-dimensional posterior distributions are
shown in Figure 28 and Figure 29. One dimensional posteriors are often plotted as “violin
plots” to allow comparison between the results for multiple events. The violin plot plots the
parameter value on the y-axis and the posterior density on the x-axis, which is opposite to the
usual convention. Additionally, the posterior is reflected in the y-axis so that it is symmetric
about that axis for each event. The width of the resulting violin plot is proportional to the
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Figure 28: Joint two dimensional posterior on mass and mass ratio (left) and on final mass
and spin (right) for all of the events observed by LIGO/Virgo during the O1 and O2 observing
runs. Reproduced from Abbott et al. (2019), Phys. Rev. X 9 031040.

posterior probability for the corresponding value of the parameter. An example is shown
in Figure 30. Posteriors in the spins of the black holes, which is fundamentally a three-
dimensional quantity, are typically represented by semi-circular density plots such as those
shown in Figure 31. The full 3D posterior is marginalised over the (poorly constrained)
azimuthal direction of the spin, and the resulting 2D posterior is represented on a semi-circle
with the spin-magnitude as the radial direction and the angle between the spin vector and
the orbital angular momentum as the angular direction. The density of the colour in these
plots is proportional to the posterior density for the corresponding spin vector.

LALInference/Bilby are also used to obtain posterior deviations on parameters character-
ising deviations from general relativity, to facilitate tests of GR. More details can be found,
along with results from analysis of the O1 and O2 events, in Abbott, B.P., et al., Phys. Rev.
D 100, 104036 (2019). Results for the analysis of O3a events can be found in Abbott, B.P.,
et al., Phys. Rev. D 103, 122002 (2021).

7.2 Reduced order modelling*

LIGO parameter estimation codes are computationally expensive, primarily due to the cost of
evaluating models of the gravitational waveforms to compute likelihoods. To make inference
more efficient, it is advantageous to have models of the signals that are quicker to evaluate.
This has been achieved by building reduced order models and surrogate models. The
principle of both approaches is quite similar. First, a basis for the space of waveforms is
found that has lower dimensionality than the number of samples in the original waveforms.
Then either a fast interpolant is constructed to map physical parameters to the weights of
the basis functions (in the case of some surrogate models, the interpolant is built directly
for the waveform itself) or a reduced order quadrature representation of the likelihood
is constructed.

In the latter approach, a projection of the target waveform onto the reduced basis is
obtained not by using overlaps to find the best projection, but instead by requiring the
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Figure 29: Sky location posterior distribution for all events observed by LIGO/Virgo during
the O1 and O2 observing runs. Reproduced from Abbott et al. (2019), Phys. Rev. X 9
031040.

Figure 30: One-dimensional marginalised posteriors on the mass ratio (left) and effective
spin (right) for all the events observed by LIGO/Virgo during the O1 and O2 observing
runs. The one-dimensional posteriors are represented as “violin plots” as described in the
text. Reproduced from Abbott et al. (2019), Phys. Rev. X 9 031040.
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Figure 31: Posteriors on the spins of the two components in the binary for all of the events
observed by LIGO/Virgo during the O1 and O2 observing runs. The distance from the
origin represents the magnitude of the spin, and the angle represents the direction of the
spin. The two halves of the plot are for the primary (left) and secondary (right) object in
the binary. The density of colour is proportional to the posterior density for that spin value.
Reproduced from Abbott et al. (2019), Phys. Rev. X 9 031040.
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target waveform to exactly match a linear combination of basis waveforms at a number
of points, called quadrature interpolation points, equal to the number of functions in
the basis. This allows the likelihood quadrature to be reduced to a sum over the target
waveform evaluated at the quadrature points weighted by data-dependent constants that
can be computed prior to running inference from overlaps of the basis functions with the
data. The full procedure is as follows

• Find a (reduced) set of basis functions, {ei(f)}, of size m, that can represent all
waveforms in the training data set to a certain pre-specified precision. This is done
using a greedy algorithm, sequentially selecting the least well represented waveform
to add to the current reduced basis set, until the desired representation accuracy is
reached.

• Identify m quadrature interpolation points, at which the reduced basis representation
will be forced to match the target waveform. This is again done using a greedy al-
gorithm, choosing at each stage to put an interpolation point at the point where the
difference between the next basis function and the current interpolated representation
is largest.

• Define the matrix Aij = ej(Fi). For any given choice of the waveform parameters, λ,

define the vector ~h(λ) by hi = h(Fi|λ). The interpolated representation of h(f |λ) is
A−1
ij hj(λ)ei(f).

• The overlap of the waveform h(λ) with the data can then be represented via(
h(~λ)|d

)
= 4<

∫ ∞
0

h̃(~λ)d̃∗(f)

Sh(f)
df

≈ 4<

N/2∑
k=0

d∗(fk)ei(fk)∆fA−1
ij

hj(~λ)

= 4<
m∑
k=1

ωkhk(~λ). = 4<
m∑
k=1

ωkh(Fk;~λ). (104)

where the weights

ωk =

N/2∑
k=0

d∗(fk)ei(fk)∆fA−1
ik


are independent of the parameters and can therefore be pre-computed prior to infer-
ence.

Evaluating this reduced order quadrature likelihood now requires only summing m terms,
rather than the N required for the full likelihood, so it represents a considerable saving when
m� N . Reduced order quadrature approximations to likelihoods are the state of the art in
LIGO parameter estimation, but they require being able to evaluate the target waveform at
certain frequencies quickly and so can only be directly used with frequency-domain waveform
approximants. This problem is overcome in surrogate models by constructing an additional
interpolant across parameter space at each of the quadrature interpolation points.

For further information on reduced basis and surrogate models, please consult the fol-
lowing papers and references therein
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• Field, S., et al., Reduced basis catalogs for gravitational wave templates, Phys. Rev.
Lett. 106 221102 (2011).

• Canizares, P., et al., Gravitational wave parameter estimation with compressed likeli-
hood evaluations, Phys. Rev. D 87 124005 (2013).

• Field, S., et al., Fast prediction and evaluation of gravitational waveforms using surro-
gate models, Phys. Rev. X 4 031006 (2014).

• Canizares, P., et al., Accelerated gravitational-wave parameter estimation with reduced
order modeling, Phys. Rev. Lett. 114 071104 (2015).

• Blackman, J., et al., Fast and accurate prediction of numerical relativity waveforms
from binary black hole coalescences using surrogate models, Phys. Rev. Lett. 115
121102 (2015).

• Varma, V., et al., Surrogate models for precessing binary black hole simulations with
unequal masses, Phys. Rev. Research 1 033015 (2019).

7.3 Population inference

Inference on the properties of the population of sources form which the observed LIGO
events are drawn also uses Bayesian methods, specifically Bayesian hierarchical modelling.
We encountered one example of this in Section 5.9, which is the inference of cosmological
parameters using gravitational wave observations of binary neutron star mergers with coun-
terparts. Other examples include inference on the rate of mergers of different types of source
in the Universe, and on the distributions of masses and spins of black holes and neutron
stars. Full details on the range of population analyses carried out for the O1 and O2 events
can be found in Abbott, B.P., et al., Astrophys. J. Lett. 882, L24 (2019) and for O3 events
in Abbott, B.P., et al., arxiv:2111.03634 (2021), but we summarise some of the key analyses
here.

7.3.1 Rate estimation

Accurate estimation of the rate of events in the Universe is complicated by confusion with
detector noise, i.e., identifying which events are real gravitational wave events and which
are instrumental artefacts, and by the need to make assumptions about the distribution of
parameters of sources in the population. The first problem was tackled in Farr, W., Gair,
J.R., Mandel, I., and Cutler, C., Phys. Rev. D 91, 023005 (2014). If the output of the
detector is represented by a sequence of values of a detection statistic, x, and any statistic
value that exceeds some threshold, xmin, is regarded as a detection, then the observed data
is a set of detection statistic values above threshold, {xi}. Some of these events correspond
to real foreground events, while others arise due to noise fluctuations in the detector and are
background. We introduce an (unobserved) parameter fi for each event such that fi = 1 is
it is a foreground event and fi=0 if it is background. The foreground and background events
are assumed to be generated by independent Poisson processed with rates

dNf

dx
= Rf f̂(x, θf ),

dNb

dx
= Rbb̂(x, θb)
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and corresponding cumulative distributions F̂ (x, θf ), B̂(x, θb). Here Rf and Rb are the fore-
ground and background rates respectively and θf and θb represent any unknown parameters
that characterise the foreground and background distributions. The combined posterior for
the rates, event flags and distribution parameters is

p(fi, Rf , Rb, θ|dto, N) =
α

p(dto, N)N !

 ∏
i|fi=1

Rf f̂(xi, θ)

 ∏
i|fi=0

Rbb̂(xi, θ)

 exp[−(Rf+Rb)]
p(θ)√
RfRb

where p(θ) is the prior on the posterior parameters and we are using a Jeffreys’ prior p(R) ∝
1/
√
R on the rates. The subscript on dto indicates that we are using time-ordered data. The

data could also be analysed ordered by ranking statistic. This posterior can be marginalised
over the unknown flags to give posteriors on the rates, or over the rates to give posterior
probabilities for fi = 1 for each event.

One complication with this approach is that it relies on a model for the foreground and
background distributions. These can be estimated by injections and time-slides, but, since
LIGO is not equally sensitive to all types of CBC event, the former requires imposing some
model of the astrophysical population from which the events are drawn. One approach to
this is to assume that all events in the Universe are the same as the one that has been
observed. This approach was used in Kim, Kalogera and Lorimer (Astrophys. J. 584, 985
(2003)) to estimate the rate of double neutron star mergers and so is often referred to as the
“KKL method”. In the first LIGO detection paper, for GW150914, the combination of the
rate estimation accounting for confusion (FGMC) and the KKL method was used to infer
the rate of binary black hole mergers. The application of this “alphabet soup” method was
complicated by the fact that the data being analysed to infer the background for GW150914
contained a second CBC trigger, LVT151012. The parameters of this event were completely
different to GW150914, so the KKL method could still be applied, but generalising to the
case where all events in the Universe were either like GW150914 or LVT151012. Further
details can be found in Abbott, B.P., et al. Astrophys. J. Lett. 833, 1 (2016) and Abbott,
B.P., et al. Astrophys. J. Supp. 227, 14 (2016).

One additional trigger, GW151226, was present in the LIGO O1 data, and that again
had sufficiently distinct parameters that the KKL approach could be used. In O2, the events
began to have much more posterior overlap and so this method could no longer be used.
Now, a model of the population is assumed in event rate estimation. O2 analyses used both
a power-law mass distribution or a flat in log-mass distribution in an attempt to bound the
range of possible rate. Results in O3 were obtained by simultaneously fitting for the rate
and the population model, using the models for the mass distribution described in the next
section.

7.3.2 Black hole mass distribution

The mass distribution of stellar-origin black holes in binaries can be inferred from LIGO/Virgo
observations in a hierarchical analysis by placing a prior on the mass of individual events
that depends on some unknown parameters that can be constrained from analysing the full
set of events. The GWTC-1 analysis using O1 and O2 events is described in Abbott, B.P.,
et al., Astrophys. J. Lett. 882, L24 (2019), while the analysis of GWTC-3 using all events
observed up until the end of O3, is described in Abbott, B.P., et al., arxiv:2111.03634. These
analyses used a number of different models to describe the mass distribution. The GWTC-1
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analysis employed two different parametric models, the truncated mass model and the
power law + peak model.

Truncated mass model This model assumes a power law distribution on mass and mass
ratio, with low and high mass cut-offs

p(m1,m2|mmin,mmax, α, βq) ∝
{
C(m1)m−α1 qβq if mmin ≤ m2 ≤ m1 ≤ mmax

0 otherwise
.

The GWTC-1 analysis considered two different versions of this model. In the first, the
parameters mmin = 5M�, βq = 0 were fixed, leaving onlymmax and α free to vary. In the
second variant, all four parameters were allowed to vary.

Power law + peak This model mixes a power-law component of the above form, with
a Gaussian component, which was designed to fit any excess of events near the lower mass
limit of the pair-instability supernova mass gap. The model is

p(m1|θ) =

[
(1− λm)A(θ)m−α1 Θ(mmax −m1) + λmB(θ) exp

(
−(m1 − µm)2

2σ2
m

)]
S(m1|mmin, δm)

p(q = m2/m1|m1, θ) = C(m1, θ)q
βqS(m2|mmin, δm). (105)

Here, A(θ) and B(θ) are computed to normalize the truncated-power-law and Gaussian
components of the model, respectively. The function S(m1|mmin, δm) is a smoothing function
that cuts off the distribution at lower masses, which is defined by

S(m|mmin, δm) =


0 if m < mmin[
1 + exp

(
δm

m−mmin
+ δm

m−mmin−δm

)]−1

if mmin < m < mmin + δm

1 if m > mmin + δm
(106)

The mass distributions obtained by fitting these models to the O1 and O2 data are shown
in Figure 32.

With the larger numbers of events observed in O3, it was possible to fit more complex
population models. In particular, it was found that the truncated model was insufficient to
describe the observed population, although the power law + peak model was still a reasonable
approximation to the distribution of masses observed in the binary black hole systems. The
LVK analysis of the GWTC-3 population introduced one additional parametric model, the
power law + dip + peak model, and also performed three different non-parametric fits.

Power law + dip + peak This model was introduced to allow for the fitting of a single
distribution that covered all compact objects, i.e., both neutron stars and black holes. The
model takes the form

p(m|θ) = n(m|Mgap
low ,M

gap
high, A)× l(m|mmax, η)×


mα1 if m < Mgap

high

mα2 if m > Mgap
high

0 if m > mmax or m < mmin

,

(107)

where l(m|mmax, η) is a low-pass filter with power-law fall-off η, applied at mmax and the
function n(m|Mgap

low ,M
gap
high, A) is a notch filter, of depth A and applied between Mgap

low and
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Mass Parameters Spin Parameters

Model ↵ mmax mmin �q �m µm �m �m E[a] Var[a] ⇣ �i

A [-4, 12] [30, 100] 5 0 0 N/A N/A N/A [0, 1] [0, 0.25] 1 [0, 10]

B [-4, 12] [30, 100] [5, 10] [-4, 12] 0 N/A N/A N/A [0, 1] [0, 0.25] 1 [0, 10]

C [-4, 12] [30, 100] [5, 10] [-4, 12] [0, 1] [20, 50] (0, 10] [0, 10] [0, 1] [0, 0.25] [0, 1] [0, 4]

Table 2. Summary of models used in Sections 3, 4, and 5, with the prior ranges for the population parameters. The fixed
parameters are in bold. Each of these distributions is uniform over the stated range. All models in this Section assume rates
which are uniform in the comoving volume (� = 0). The lower limit on mmin is chosen to be consistent with Abbott et al.
(2018).

Figure 1. Inferred di↵erential merger rate as a function of primary mass, m1, and mass ratio, q, for three di↵erent assumptions.
For each of the three increasingly complex assumptions A, B, C described in the text we show the PPD (dashed) and median
(solid), plus 50% and 90% symmetric credible intervals (shaded regions), for the di↵erential rate. The results shown marginalize
over the spin distribution model. The fallo↵ at small masses in models B and C is driven by our choice of the prior limits on
the mmin parameter (see Table 2). All three models give consistent mass distributions within their 90% credible intervals over
a broad range of masses, consistent with their near-unity evidence ratios (Table 3); in particular, the peaks and trough seen in
Model C, while suggestive, are not identified at high credibility in the mass distribution.

constraints on the presence or absence of a mass gap at

low black hole mass.

Models B and C also allow the distribution of mass ra-

tios to vary according to �q. In these cases the inferred

mass-ratio distribution favors comparable-mass binaries

(i.e., distributions with most support near q ' 1), see

panel two of Figure 1. Within the context of our pa-

rameterization, we find �q = 6.7+4.8
�5.9 for Model B and

�q = 5.8+5.5
�5.8 for Model C. These values are consistent

with each other and are bounded above zero at 95% con-

fidence, thus implying that the mass ratio distribution

is nearly flat or declining with more extreme mass ra-

tios. The posterior on �q returns the prior for �q & 4.

Thus, we cannot say much about the relative likelihood

of asymmetric binaries, beyond their overall rarity.

The distribution of the parameter controlling the frac-

tion of the power law versus the Gaussian component in

Model C is �m = 0.4+0.3
�0.3, which peaks away from zero,

implying that this model prefers a contribution to the

mass distribution from the Gaussian population in ad-

Figure 32: Black hole mass function inferred from LIGO/Virgo events observed in the O1
and O2 observing runs. Figure reproduced from Abbott, B.P., et al., Astrophys. J. Lett.
882, L24 (2019).



124 Introduction to Statistics for GWs

Mgap
high. The purpose of the notch is to suppress objects in the mass range between neutron

stars and black holes, as these should be distinct populations. The purpose of the low-pass
filter is to make the distribution smoothly go to zero at the lower edge of the pair-instability
mass gap and plays a similar role to the truncation in the truncated model.

This mass function is used to describe both components in the binary, and is combined
with a pairing function that describes correlations between m1 and m2. The GWTC-3
analysis considered two different pairing models: (i) random pairing, in which m1 and m2

are independent draws from p(m|θ), constrained so that m2 < m1; and (ii) power-law-in-
mass-ratio pairing, in which p(m1,m2|θ, β) ∝ p(m1|θ)p(m2|θ)qβ if m2 < m1 or 0 otherwise.

Non-parametric models The LVK population analysis of GWTC-3 also used three non-
parametric models to describe the astrophysical distribution of black hole masses. Non-
parametric models typically have arbitrary numbers of degrees of freedom, giving them
greater flexibility to fit observed data. In practice, a non-parametric model is fitted by
gradually increasing the number of parameters until the additional model complexity is
no longer supported by sufficient improvement in the fit to the data. The LVK analysis
considered three different non-parametric approaches

• Power law + spline In this model the mass distribution is represented as a perturbed
truncated power-law. The model is

p(m1|α,mmin,mmax, δm, {fi}) = k p(m1|α,mmin,mmax, δm) exp[f(m1|{fi})] (108)

where k is a normalising constant, p(m1|α,mmin,mmax, δm) is the power-law + peak
model with λm = 0 so that the Gaussian peak is removed from the model and
f(m1|{fi}) is a cubic spline with weights {fi} at n knots equally spaced in log(m1) in
the range 2—100M�. The non-parametric part of this model is the flexibility in the
choice of n. The optimal choice for n is chosen by comparing evidences for different
choices of n and, in the GWTC-3 analysis, 20 knots was found to be optimal.

• Flexible mixtures This model aims to represent both the mass and spin distribution
simultaneously, by representing the joint distribution as a sum of separable compo-
nents. The model takes the form

p(M, q, s1z, s2z|θ) =
N∑
i=1

wiG(M|µMi , σMi )G(s1z|µszi , σszi )G(s2z|µszi , σszi )P (q|αqi , qmin
i , 1),

(109)
where N is the number of components, M is the chirp mass and siz is the component
of the spin of the i’th component aligned with the orbital angular momentum. The
function G(X|µ, σ) is a Gaussian in the variable X, with mean µ and variance σ2,
while P (X|α, xmin, xmax) denotes a power-law with slope α, truncated below xmin and
above xmax, The flexibility in this model again comes from varying the number of
components, N . For a fixed N , the parameters of each of the distributions and the
relative component weights, wi, are fitted to the data. The optimal N is found from
maximizing the evidence, and the optimal choice was found to be 11 in the analysis of
GWTC-3.

• Binned Gaussian process In this model, the (m1,m2) parameter space is divided up
into a set of bins, labelled i. The rate density of mergers in each bin, ni, is represented
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FIG. 11. The di↵erential merger rate for the primary mass predicted using three non-parametric models compared to the
fiducial PP model. Solid curves are the medians and the colored bands are the 90% credible intervals. These models o↵er
increased flexibility compared to phenomenological models in predicting the population. The PS applies a perturbation to the
primary mass in a modified version of our fiducial PP model that does not include the Gaussian peak. FM models the chirp
mass, mass ratio, and aligned spin distribution as a weighted sum of mixture components. Both of these models incorporate a
single parameter redshift evolution of the merger rate [Eq. (7)]. The BGP models the two-dimensional mass distribution as a
binned Gaussian Process which is piecewise constant in log mi, illustrating the same analysis as presented in Sec. IV with FAR
< 0.25 yr�1. All three models infer a local maximum in the merger rate at around 10M� and 35M�.

FIG. 12. The cubic spline function, f(m1), describing the
perturbations to an underlying power law inferred with the
PS model. The thin grey lines show 1000 draws from the
posterior while the black lines show the knot locations (verti-
cal) and the 90% credible region of the posterior. The dashed
blue lines mark the 90% credible bounds of the Gaussian pri-
ors (centered on zero) imposed on each knot’s height. The
shaded region covers any masses less than the 95th percentile
of the marginal posterior distribution on mmin. Because the
low mass region of the mass distribution is cut o↵ and there
are no observations there, the posterior in this region resem-
bles the prior of the cubic spline function.

over, any metallicity dependence in the physics of stars,
such as the maximum black hole mass imposed by pair
instability supernovae (PISN) [144, 146, 173], could yield
redshift-dependent features in the black hole mass dis-
tribution [174, 175]. Such a redshift dependence would
confound e↵orts to leverage the PISN mass gap as a probe
of cosmology. Previous investigations [176] demonstrated

using GWTC-2 that redshift dependence of the maxi-
mum BBH mass would be required to fit the observa-
tions if the BBH mass distribution has a sharp upper
cuto↵. However, if the distribution decays smoothly at
high masses, for example as a power-law, the data are
consistent with no redshift dependence of the cuto↵ lo-
cation.

We revisit this question using the latest BBH detec-
tions among GWTC-3, finding that these conclusions
remain unchanged. Specifically, by modelling the high-
mass tail of the distribution with a separate power-law
index, we find no evidence that the distribution is red-
shift dependent, suggesting that the high-mass structure
in the BBH mass distribution remains consistent across
redshift.

E. Outliers in the BBH Population

While we inferred the population of most BBH and bi-
naries involving NS, some systems (particularly with high
mass ratio) lie at the boundary between these categories
[23, 142]. So far, we have simply excluded these events
from our BBH analysis. To demonstrate this choice is in-
ternally self-consistent and well-motivated, we show that
these events are outliers from our recovered BBH pop-
ulation. Specifically, we repeat the population analysis
using the PP model, highlighting the extent to which the
population changes when including these events.

For a population consisting of all potential BBH events
in O3, including GW190917 and GW190814, the mass
distribution must extend to lower masses. In Fig. 14
we plot the recovered distribution for the minimum BH

Figure 33: Black hole mass function inferred from LIGO/Virgo events in GWTC-3. Figure
reproduced from Abbott, B.P., et al., arxiv:2111.03634 (2021). The various coloured curves
show the result of fitting the power-law + peak (PP), power-law + spline (PS), flexible
mixtures (FM) and binned Gaussian process (BGP) models to the data.

as a Gaussian process, characterized by a constant mean µ, and covariance function

Σ(x,x′) = σ2 exp

(
−|x− x′|2

2l2

)
. (110)

In the binned model, the vector x is taken to be the vector of mass values in the centre
of the bin. The model is characterized by the three parameters µ, σ and l, but because
the rates in each bin are a random draw from the Gaussian process, these rates can be
regarded as additional model parameters. When fitting the model, the individual rates
are inferred simultaneously with the parameters characterising the Gaussian process,
resulting in a map of the rate density across the mass parameter space. For the GWTC-
3 analysis, the mass distribution was fitted in this way while assuming a fixed evolution
of the merger rate with redshift, and a fixed isotropic distribution of black hole spins.

Figure 33 shows the result of fitting these three non-parametric distributions to the
observations reported in the GWTC-3 catalogue, compared to the result of fitting the power-
law + peak model.

7.3.3 Black hole spin distribution

A hierarchical analysis of LIGO/Virgo events can also provide insight into the spin distribu-
tion. This can also be done either parametrically or non-parametrically. As spin magnitudes
lie in the range [0, 1] it is natural to model these with a Beta distribution, whose support
is confined to that range. This was used to analyse the O1/O2 events in Abbott, B.P., et
al., Astrophys. J. Lett. 882, L24 (2019), and again as the default spin model to analyse O3
events in arxiv:2111.03634. The model is

p(χi|αχ, βχ) =
χ
αχ−1
i (1− χi)βχ−1

B(αχ, βχ)
.

A non-parametric analysis was also used for the analysis of GWTC-1, but not GWTC-3.
This modelled the spin-magnitude distribution as a set of heights of a binned distribution,



126 Introduction to Statistics for GWs

with the bin heights free parameters to be determined by the observations. For example, a
three-bin distribution (Farr, B., Holz, D., and Farr, W., Astrophys. J. 854, L9 (2018))

p(χ) =


A1/3 0 ≤ χ ≤ 1/3
A2/3 1/3 ≤ χ ≤ 2/3
1− (A1 + A2)/3 2/3 ≤ χ ≤ 1

.

The posteriors obtained from applying these models to the O1 and O2 events are shown in
Figure 34, and the posterior from applying the parametric model to GWTC-3 is shown in
Figure 35.

LIGO observations measure the effective spin, χeff , better than individual spins. The
recovered distribution has significant support for χeff < 0, which has significant implications
for binary formation models, as negative effective spins are very hard to produce in standard
isolated binary evolution and are therefore an indicator of dynamical formation channels. To
assess the robustness of this result, a truncated-Gaussian model was fitted, with truncation
in the range [χeff,min, 1]. This supported χeff,min < 0 at > 99% confidence. It was argued in
Roulet et al. (Phys. Rev. D 104 083010 (2021)) and Galaudage et al. (arxiv:2109.02424
(2021)) that this result might arise from the combination of a population with χeff > 0 and
a smaller sub-population with vanishing spin, χeff = 0. To address this the LVK GWTC-3
analysis fitted a model of the form

p(χeff |µeff , σeff , χeff,min) = ζbulkN[χeff,min,1](χeff |µeff , σeff) + (1− ζbulk)N[−1,1](χeff |0, 0.01),

where N[a,b](x|µ, σ) denotes a normal distribution with mean µ and variance σ2, truncated
to the range [a, b]. Fitting such a model reduced the probability that χeff,min < 0 to 88%.

To explore possible correlation structures in the spin distribution of the observed events,
a model was also fitted to the joint distribution of χeff and the precessional spin component,
χp, of the form

p(χeff , χp|µeff , σeff , µp, σp, ρ) ∝ G

(
χeff , χp

∣∣∣∣∣µ =

(
µeff

µp

)
,Σ =

(
σ2

eff ρσeffσp
ρσeffσp σ2

p

))

where G(x, y|µ,Σ) is a two-dimensional Gaussian distribution for the parameters x and y,
with mean vector µ and covariance matrix Σ. The purpose of fitting a generic distribution
like this is to try and quantify the covariance of the variables, which is indicated by non-zero
values for the correlation parameter ρ.

The spin direction is also a parameter of interest astrophysically, as different formation
scenarios predict either isotropically distributed spin directions, or a preference for spins to
be aligned with the angular momentum of the binary. To capture this, we can use a mixture
model

p(cos t1, cos t2|σt, ζ) =
(1− ζ)

4
+

2ζ

π

∏
i∈{1,2}

exp(−(1− cos ti)
2/2σ2

t )

σterf(
√

2/σt)
.

For the LVC analysis of the GWTC-1 catalogue the Gaussian component was modified so that
the t1 and t2 components had independent variances, but in the analysis of GWTC-3, these
were fixed to be equal. LIGO measurements in O1 and O2 were not sufficiently informative
about spins to strongly constrain the parameters of the model, but later catalogues have
shown increasing support for an isotropic distribution (see Figure 36).
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Mass Model Spin Parameters

Model E[a] Var[a] ↵a, �a ⇣ �i

Gaussian (G) C [0, 1] [0, 0.25] � 1 1 [0, 4]

Mixture (M) C [0, 1] [0, 0.25] � 1 [0, 1] [0, 4]

Table 6. Summary of spin distribution models examined in Section 5.1, with prior ranges for the population parameters
determining the spin models. The fixed parameters are in bold. Each of these distributions is uniform over the stated range,
with boundary conditions such that the inferred parameters ↵a, �a must be � 1. Details of the mass model listed here is
described in Table 2.

Figure 7. Inferred distribution of spin magnitude for
a parametric (top) and non-parametric binned model (bot-
tom). The solid lines show the median and the dashed line
shows the PPD. The shaded regions denote the 50% and 90%
symmetric intervals. In the bottom panel, the distribution
of spin magnitude is inferred over five bins, assuming either
perfectly aligned (green) or isotropic (blue) population. The
solid lines denote the median, and the shaded regions denote
the central 90% posterior credible bounds. In both cases,
the magnitude is consistent within the uncertainties with the
parametric results.

et al. (2018). We show in the bottom panel of Figure 7

that under the perfectly aligned scenario there is pref-
erence for small black hole spin, inferring 90% of black
holes to have spin magnitudes below 0.6+0.24

�0.28. However,

when spins are assumed to be isotropic the distribution

is relatively flat, with 90% of black hole spin magni-
tudes below 0.8+0.15

�0.24. Thus, the non-parametric analy-
sis produces conclusions consistent with our parametric

analyses described above. These conclusions are also
reinforced by computing the Bayes factor for a set of
fixed parameter models of spin magnitude and orienta-
tion in Appendix B. There we find that the very low

spin magnitude model is preferred in all three orienta-
tion configurations tested (see Figure 11 and Table 7 for
details).

Figure 8 shows the inferred distribution of the pri-
mary spin tilt for the more massive black hole. These
results were obtained without including the e↵ects of

component spins on the detection probability: see Ap-
pendix A for further discussion. In the Gaussian model
(⇣ = 1), all black hole spin orientations are drawn from
spin tilt distributions which are preferentially aligned

and parameterized with �i. In that model, the �i dis-
tributions do not di↵er appreciably from the their flat
priors. As such, the inferred spin tilt distribution are in-

fluenced by large �i and the result resembles an isotropic
distribution. The Mixture distribution does not return
a decisive measurement of the mixture fraction, obtain-

ing ⇣ = 0.5+0.4
�0.5. Since the Gaussian model is a subset of

Figure 8. Inferred distribution of cosine spin tilt for
the more massive black hole for two choices of prior (see
Section 2.4). The dash-dotted line denotes a completely
isotropic distribution (see Appendix B). The solid lines show
the median. The shaded regions denote the 50% and 90%
symmetric intervals and the dashed line denotes the PPD.

Figure 34: Black hole spin distribution inferred from LIGO/Virgo events observed in the O1
and O2 observing runs, using a parametric (top panel) or non-parametric (bottom panel)
approach. Figures reproduced from Abbott, B.P., et al., Astrophys. J. Lett. 882, L24
(2019).
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FIG. 15. The distributions of component spin magnitudes � (left) and spin-orbit misalignment angles ✓ (right) among
binary black hole mergers, inferred using the Default component spin model described further in Sect. B 2 a; e.g., both
spin magnitudes are drawn from the same distribution. In each figure, solid black lines denote the median and central 90%
credible bounds inferred on p(�) and p(cos ✓) using GWTC-3. The light grey traces show individual draws from our posterior
distribution on the Default model parameters, while the blue traces show our previously published results obtained using
GWTC-2. As with GWTC-2, in GWTC-3 we conclude that the spin magnitude distribution peaks near �i ⇡ 0.2, with a tail
extending towards larger values. Meanwhile, we now more strongly favor isotropy, obtaining a broad cos ✓i distribution that
may peak at alignment (cos ✓i = 1) but that is otherwise largely uniform across all cos ✓.

�0.6 �0.4 �0.2 0.0 0.2 0.4 0.6
�e↵

0

1

2

3

4

5

6

p(
�

e↵
)

GWTC-2

GWTC-3

0.0 0.2 0.4 0.6 0.8 1.0
�p

0

2

4

6

8

10

p(
�

p
)

GWTC-2

GWTC-3

FIG. 16. Left panel : Inferred distribution of �e↵ for our latest full analysis in black. For comparison, the blue distribution and
interval shows our inferences derived from GWTC2. Right panel : Corresponding result for �p. While both panels in this figure
are derived using the Gaussian spin model, we find similar conclusions with the other spin models used to analyze GWTC-2.

diminishes [193]. Motivated by the concerns raised in
[191] and [192], we repeat our inference of �e↵,min but
under an expanded model that allows for a narrow sub-
population of BBH events with extremely small e↵ective
inspiral spins:

p(�e↵ |µe↵ , �e↵ , �e↵,min) = ⇣bulkN[�eff,min,1](�e↵ |µe↵ , �e↵)

+ (1 � ⇣bulk)N[�1,1](�e↵ |0, 0.01).
(18)

Here, ⇣bulk is the fraction of BBHs in the wide bulk pop-
ulation, truncated above �e↵,min, while (1 � ⇣bulk) is the
fraction of events residing in the vanishing spin sub-
population, which formally extends from �1 to 1. When
repeating our inference of �e↵,min under this expanded

model, our data still prefer a negative �e↵,min but with
lower significance. As seen in Fig. 18, we now infer that
�e↵,min < 0 at 88.4% credibility. This expanded model
allows us to additionally investigate evidence for the exis-
tence of a sub-population of BBHs with vanishingly small
spins. GWTC-3 prefers but does not require such a sub-
population to exist. We measure ⇣bulk = 0.49+0.32

�0.22, with
⇣bulk > 0.18 at 99% credibility, but also find that our
posterior remains consistent with ⇣bulk = 1.

Figure 35: Black hole spin distribution inferred from LIGO/Virgo events observed up to the
end of the O3 observing run, using the same parametric approach as in the upper panel of
Figure 34. Figure reproduced from Abbott, B.P., et al., arxiv:2111.03634 (2021).
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FIG. 15. The distributions of component spin magnitudes � (left) and spin-orbit misalignment angles ✓ (right) among
binary black hole mergers, inferred using the Default component spin model described further in Sect. B 2 a; e.g., both
spin magnitudes are drawn from the same distribution. In each figure, solid black lines denote the median and central 90%
credible bounds inferred on p(�) and p(cos ✓) using GWTC-3. The light grey traces show individual draws from our posterior
distribution on the Default model parameters, while the blue traces show our previously published results obtained using
GWTC-2. As with GWTC-2, in GWTC-3 we conclude that the spin magnitude distribution peaks near �i ⇡ 0.2, with a tail
extending towards larger values. Meanwhile, we now more strongly favor isotropy, obtaining a broad cos ✓i distribution that
may peak at alignment (cos ✓i = 1) but that is otherwise largely uniform across all cos ✓.
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diminishes [193]. Motivated by the concerns raised in
[191] and [192], we repeat our inference of �e↵,min but
under an expanded model that allows for a narrow sub-
population of BBH events with extremely small e↵ective
inspiral spins:

p(�e↵ |µe↵ , �e↵ , �e↵,min) = ⇣bulkN[�eff,min,1](�e↵ |µe↵ , �e↵)

+ (1 � ⇣bulk)N[�1,1](�e↵ |0, 0.01).
(18)

Here, ⇣bulk is the fraction of BBHs in the wide bulk pop-
ulation, truncated above �e↵,min, while (1 � ⇣bulk) is the
fraction of events residing in the vanishing spin sub-
population, which formally extends from �1 to 1. When
repeating our inference of �e↵,min under this expanded

model, our data still prefer a negative �e↵,min but with
lower significance. As seen in Fig. 18, we now infer that
�e↵,min < 0 at 88.4% credibility. This expanded model
allows us to additionally investigate evidence for the exis-
tence of a sub-population of BBHs with vanishingly small
spins. GWTC-3 prefers but does not require such a sub-
population to exist. We measure ⇣bulk = 0.49+0.32

�0.22, with
⇣bulk > 0.18 at 99% credibility, but also find that our
posterior remains consistent with ⇣bulk = 1.

Figure 36: Black hole spin-tilt distribution inferred from LIGO/Virgo events observed
up until the end of the O3 observing run. Figure reproduced from Abbott, B.P., et al.,
arxiv:2111.03634 (2021).

7.3.4 Mixed mass-spin distributions

As masses and spins are both indicators of the evolution path of a particular binary, it
might be expected that there are correlations between mass and spin properties that reveal
information about the underlying astrophysics. The flexible mixtures model can represent
correlations, since while each component is separable, the sum is not. However, this model
is not well adapted to extracting any correlations that are present and this is more easily
achieved using suitably designed parametric models. In the GWTC-3 analysis, the LVK
explored one particular possible correlation, between mass ratio, q, and the effective spin,
χeff . The specific model used took the form

p(χeff |q) ∝ exp

[
−(χeff − µ(q))2

2σ2(q)

]
where µ(q) = µ0 + α(q − 1)

log10 σ(q) = log10 σ0 + β(q − 1). (111)

The parameters α and β represent simple linear evolution with mass ratio of the mean and
variance of the effective spin distribution. The GWTC-3 data favoured α < 0 with 98%
credibility, i.e., that black holes with more equal mass ratios tend to have smaller spins. The
GWTC-3 results are shown in Figure 37.
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FIG. 19. The dependence of aligned spin magnitude on the
chirp mass. The light/dark shaded regions are the aligned
spin magnitude at a credibility 90%/50%. The distribution
is consistent with small values for lower chirp mass bina-
ries, however, there is an increase in the magnitude for chirp
masses of 30 M� and higher.
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FIG. 20. Posterior constraints on the mean (top) and stan-
dard deviation (bottom) of the �e↵ distribution as a function
of mass ratio q. At 98.3% credibility, we find that the mean
of the �e↵ shifts towards larger values for more unequal mass
systems. The grey region in the lower panel shows the area
artificially excluded by our prior on the parameters �0 and �;
see Eq. (20).

FIG. 21. Posteriors on the mass ratios and e↵ective inspi-
ral spins of BBHs in GWTC-3, reweighted to a population-
informed prior allowing for a correlation between q and �e↵ .
We infer that the mean of the BBH �e↵ distribution shifts
towards larger values with decreasing mass ratios. Accord-
ingly, reweighted events shift considerably, such that events
with q ⇠ 1 contract about �e↵ ⇡ 0 while events with q < 1
shift towards larger e↵ective inspiral spins.

with

µ(q) = µ0 + ↵(q � 1) (20a)

log10 �(q) = log10 �0 + �(q � 1). (20b)

The new hyperparameters ↵ and � measure the extent
to which the location or width of the �e↵ distribution
changes as a function of mass-ratio.

We repeat hierarchical inference of the BBH popula-
tion, adopting the fiducial model for the primary mass
and redshift distribution. At 98.3% credibility, we con-
strain ↵ < 0, indicating that more unequal-mass bina-
ries preferentially possess larger, more positive �e↵ . Fig-
ure 20 illustrates our constraints on the mean and stan-
dard deviation of the �e↵ distribution as a function of
mass ratio. Each light trace represents a single sample
from our hyperposterior, and the solid black lines denote
the median values and central 90% bounds on µ(q) and
�(q) at a given value of q. If we adopt these hierarchi-
cal results as a new, population-informed prior, Fig. 21
shows the resulting reweighted posteriors for the BBHs
among GWTC-3. Each filled contour bounds the central
90% region for a given event in the q–�e↵ plane, while
black points mark events’ one-dimensional median q and
�e↵ measurements.
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In this paper, we have presented population inferences
based upon events identified by the LIGO Scientific,
Virgo and KAGRA Collaborations in data taken by the
Advanced LIGO and Advanced Virgo instruments during
their first three observing runs [1, 2]. We have imposed a
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Figure 37: Variation in the mean (left) and log-standard deviation (right) of the effective spin
distribution with mass ratio, q. Figure reproduced from Abbott, B.P., et al., arxiv:2111.03634
(2021).

7.3.5 Rate evolution

The FGMC+KKL method described earlier assumes that the rate of mergers is constant,
but in principle this could evolve over cosmic history (the FGMC framework can handle this,
but the interpretation of Rf is different, as the average rate over the sensitive volume of the
detector). An evolution of the rate can be explicitly included and constrained by introducing
an extra parameter into the rate density

dR

dξ
(z|θ) = R0p(ξ|θ)(1 + z)λ.

The analysis of the O1 and O2 events provided weak evidence for an evolution in rate with
redshift, but this was mostly due to the event GW170729, which was the most marginal de-
tection. Analysis of GWTC-3 showed stronger evidence for evolution of the rate, concluding
that λ > 0 with 99.4% confidence, i.e., there is strong evidence that the rate of mergers was
higher in the past.

7.4 Model selection

Bayesian methods are also applied to model selection using the LIGO/Virgo observations,
through the evaluation of evidence ratios or Bayes factors for pairs of alternative hy-
potheses for the data. Some examples of applications to gravitational wave data are

• Test for the presence of a signal in the data after the end of the merger of the two
neutron stars in GW170817. Such a signal might be evidence that the merger project
was a hypermassive neutron star rather than a black hole. For GW170817 the Bayes
factor for the noise model over the signal model was 256.79 (Abbott, B.P., et al., Phys.
Rev. X 9 011001 (2019)), providing strong evidence that no such signal was present.

• Test of the polarisation state of gravitational waves. Possible models are that the
gravitational waves have tensor polarisation, as expected in GR, or have scalar polar-
isation or vector polarisation. The analysis of GW170818 gave Bayes factors of 12 for
tensor versus vector polarisation and 407 for tensor versus scalar, while the analysis of
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GW170814 gave Bayes’ factors of 30 and 220 respectively (Abbott, B.P., et al., Phys.
Rev. D 100 104036 (2019)).

• Tests of the no-hair property of the remnant black hole formed in a merger, by compar-
ing the properties of the observed ringdown radiation to that predicted by GR (Brito,
Buonanno and Raymond, Phys. Rev. D 98, 084038 (2018)).

• Probing alternative theories of gravity. For example, looking for evidence for dynamical
gravity with the polarisation of continuous gravitational waves (Isi et al., Phys. Rev.
D 96, 042001 (2017)).

7.5 Source reconstruction

Although Bayesian inference relies on the existence of models, it is also possible to use these
methods to recover “unmodelled” sources. One such implementation is the BayesWave
algorithm. The method works by modelling the noise and signals in the data from the
various detectors as a superposition of simple components. BayesWave represents the
noise as a combination of a smooth PSD component, described by a cubic spline, lines
represented by Lorentzians and glitches modelled by wavelets. Signals in the data are also
modelled by wavelets, but with parameters that are common across the detectors, as opposed
to the noise components which are independent in different detectors. Wavelets are simple
functions that are compact in both time and frequency. We will encounter these again in the
non-parametric regression section of this course. There are many different wavelet families,
but the wavelets used in BayesWave are known as the Morley-Gabor basis.

BayesWave fits its model using reversible jump MCMC. The reversible jump element
is required to add or remove wavelet or line components, as the number of these required is
not known a priori. Further details on the BayesWave algorithm can be found in

• Cornish, N.J., and Littenberg, T.B., Class. Quantum Grav. 32, 135012 (2015).

• Littenberg, T.B., and Cornish, N.J., Phys. Rev. D 91, 084034 (2015).

BayeWave is used in LIGO analyses for PSD estimation, glitch removal and for non-
parametric waveform reconstruction. The good agreement between the BayesWave recon-
structed waveform and the best fit model found by parameter estimation for GW150914 (see
Figure 38) provided extra support to the fact that this was a true signal.

7.6 Rapid localisation

Since the start of the O1 observing run, LIGO/Virgo have been sending out triggers to
facilitate follow-up of gravitational wave events by electromagnetic telescopes. To avoid
delays to these alerts, it is necessary to rapidly estimate the sky location of the triggers so
that astronomers know where to point their telescopes. Bayesian techniques are also used
for this purpose. Full Bayesian parameter estimation is not possible in low-latency, so the
rapid localisation algorithms are not truly Bayesian, but make approximations in evaluating
the posterior that allow it to be computed quickly.

The Bayestar algorithm replaces the full likelihood by the autocorrelation likelihood,
which is the likelihood evaluated at the maximum likelihood parameter values, as returned
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Figure 38: BayesWave reconstruction of GW150914 (labelled “unmodelled”), compared to
the waveform corresponding to the maximum a posteriori parameters obtained by param-
eter estimation (labelled “modelled”) and a numerical relativity waveform with consistent
parameters. Figure reproduced from Abbott, B.P., et al., Phys. Rev. Lett. 116, 061102
(2016).



Introduction to Statistics for GWs 133

by the online search algorithms. This autocorrelation likelihood takes the form

exp

[
−1

2

∑
i

ρ2
i +

∑
i

ρi<
{

e−iγiz∗i (τi)
}]

where ρi denotes the signal to noise ratio in detector i, γi and τi are the phase and time of
arrival of the trigger in detector i and zi(t) is the time-series of the matched filter overlap
in detector i. The marginalisation of this integral over all parameters except sky location is
accelerated using approximations to the marginalisation integrals and by employing look-up
tables. The result of running the algorithm is a sky map probability density, i.e., a weighting
of pixels on the sky by their relative probability of being the true location of the observed
transient.

More details on the Bayestar algorithm can be found in

• Singer, L., and Price, L., Phys. Rev. D 93, 024013 (2016).

Another rapid localisation algorithm used in LIGO is LALInferenceBurst or LIB.
In this case, computational savings in the model are obtained by representing an arbitrary
signal as a single sine-Gaussian

h+(t) = cos(α)
hrss√

Q(1 + cos(2φ0)e−Q2)/4f0

√
π

sin(2πf0(t− t0) + φ0)e−(t−t0)2/τ2

.

While this simple model cannot accurately describe all signals, it does represent the rela-
tive amplitudes of the signal in different detectors correctly and that is enough to obtain
reasonable sky-localisation accuracies.

There is also an online version of LIB, called oLIB, that uses Bayesian evidences com-
puted by LIB to assess triggers identified in a time-frequency analysis. The evidences for the
triggers being noise versus signal and being coherent in different detectors versus incoherent
are used to identify potentially interesting candidate events for follow-up. oLIB was running
at the time of GW150914 and, along with CWB, was the first algorithm to identify this
signal in the data.

More details on the LALInferenceBurst algorithm and on oLIB, can be found in

• Essick, R., Vitale, S., Katsavounidis, E., Vedovato, G., and Klimenko, S., Astrophys.
J. 800, 81 (2015).

• Lynch, R., Vitale, S., Essick, R., Katsavounidis, E., and Robinet, F., Phys. Rev. D
95, 104046 (2017).

7.7 LISA parameter estimation*

Bayesian methods have also been used in the context of data analysis development for LISA,
mostly in the framework of the sequence of Mock LISA Data Challenges (MLDCs) that took
place between 2006 and 2010. Bayesian techniques, with some frequentist simplifications
such as the use of the F -statistic, were used not only to characterise the identified sources,
but also to search for sources in the data set. A variety of techniques were employed,
including Markov Chain Monte Carlo algorithms, genetic algorithms and nested sampling.
These methods were successfully able to find and characterise sources in the sample data sets,
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Figure 39: Summary of the fractional errors in the recovery of parameters of the supermassive
black hole binary mergers in the third MLDC data challenge. The final two columns, labelled
FFA and FFE, give the overlap (or “fitting factor”) of the waveform corresponding to the
recovered parameters with the true injected waveform. Each row represents a separate entry
from one of the groups responding to the challenge. Table reproduced from Babak, S., et
al., Class. Quantum Grav. 27, 084009 (2010).

although these were somewhat simplified, containing only Gaussian instrumental noise with
known PSD and a reduced number of astrophysical sources. In Figure 39 we show a table of
parameter measurement precisions of supermassive black hole mergers for all submissions to
the third round of the MLDC. The final two columns of the table show the fitting factor, i.e.,
overlap, of the submitted entry with the true source in each of the two independent LISA
data channels, A and E.

The use of Bayesian techniques for searches as well as parameter estimation in the LISA
context is motivated by the nature of the data. In the LIGO/Virgo context, most sources are
of short duration relative to the time between signals, and so it is necessary to efficiently sift
through large amounts of data to find candidate sources of interest. In the LISA context, the
source duration is comparable to the length of the data stream and so the entire data stream
is relevant for the analysis of all sources. It is natural therefore to find and characterise
sources simultaneously.

While the MLDCs demonstrated the effectiveness of the use of Bayesian methods to find
and characterise most source types, several open questions remain, in particular related to
the impact of non-stationary noise and instrumental artefacts such as gaps, the full extent of
source confusion and the detection and characterisation of extreme-mass-ratio inspirals (EM-
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Figure 40: Maximum a posteriori parameter values (labelled “Found”) recovered for all five
EMRIs in the MLDC data set 1B (upper rows) and two additional random chosen sources.
These are compared to the “Ture” parameters which were used ot generate the injected
signals. Table reproduced from Babak, S., Gair, J.R., and Porter, E.K., Class. Quantum
Grav.26, 135004 (2009).

RIs). While the EMRI sources in the MLDC data sets were successfully characterised under
simplified assumptions (see Figure 40), the likelihood for an EMRI is very complicated, with
many secondary maxima in parameter space. The successful algorithms relied on knowledge
of the structure of the likelihood surface, which was specific to the simplified model of the
EMRI employed in the MLDC, and the fact that all identified secondaries were generated by
the same EMRI signal. While the structure of the likelihood surface can probably be learned
for more accurate waveform models, the correct grouping of secondary modes will be much
more challenging for real LISA data which could contain many hundreds of EMRIs.

Nested sampling has also been used in the context of LISA data analysis. In fact, the first
application of the MultiNest nested sampling algorithm in a gravitational wave context
was to the characterisation of supermassive black hole mergers in LISA data (Feroz, F., Gair,
J.R., Hobson, M.P., and Porter, E.K., Class. Quantum Grav. 26, 215003). MultiNest was
also used to find and characterise supermassive black hole mergers and gravitational wave
bursts from cosmic string cusps in MLDC data. In the latter case, the computed Bayesian
evidences were used to test the hypothesis that the burst signals were consistent with a
cosmic string cusp as opposed to a generic sine-Gaussian burst model (see Figure 41 and
Feroz, F., Gair, J.R., Graff, P., Hobson, M.P., and Lasenby, A., Class. Quantum Grav. 27,
075010 (2010)).

Further details on LISA data analysis can be found in the MLDC papers, and references
therein:
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Figure 41: Left panel: posterior on the parameters characterising one of the cosmic string
cusp gravitational wave bursts in the MLDC round 3 cosmic string data set. Right panel:
evidence ratio in favour of the true (cosmic string cusp) model versus an alternative (sine-
Gaussian) model for the burst, as a function of the burst signal-to-noise ratio. Figures
reproduced from Feroz, F., Gair, J.R., Graff, P., Hobson, M.P., and Lasenby, A., Class.
Quantum Grav. 27, 075010 (2010).
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