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This course will provide a general introduction to statistics, which will be useful for re-
searchers working in the area of gravitational wave astronomy. It will start with some of the
basic ideas from classical (frequentist) and Bayesian statistics then show how some of thee
ideas are or will be used in the analysis of data from current and future gravitational wave
(GW) detectors. The final section of the course will introduce some advanced topics that
are also relevant to GW observations. These topics will not be expounded in great depth,
but some of the key ideas will be described to provide familiarity with the concepts. The
aim of the course will be to establish sufficient grounding in statistics that students will be
able to understand research seminars and papers, and know where to begin if carrying out
research in these areas.

The lectures will be supported by a number of computer practicals. Statisticians typically
use the community software package R and this is also commonly used by researchers in other
disciplines. Most new statistical methods that are developed are implemented as R packages
and so familiarity with R will enable the user to carry out fairly sophisticated analyses
straightforwardly. However, in physics it is more common these days to use python and
there are a number of libraries of statistical functions and methods available for python as
well. Therefore, the practicals will use python.
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Course outline

1. (week 1) Classical (frequentist) statistics.

– Random variables: definition, properties, some useful probability distributions,
central limit theorem.

– Statistics: definition, estimators, likelihood, desirable properties of estimators,
Cramer-Rao bound.

– Hypothesis testing: definition, Neyman-Pearson lemma, power and size of tests,
type I and type II errors, ROC curves, confidence regions, uniformly-most-powerful
tests.

– Frequentist statistics in GW astronomy: false alarm rates, Fisher Matrix, PSD
estimation.

2. (week 2) Bayesian statistics.

– Bayes’ theorem, conjugate priors, Jeffrey’s prior.

– Bayesian hypothesis testing, hierarchical models, posterior predictive checks.

– Sampling methods for Bayesian inference.

– Bayesian statistics in GW astronomy: parameter estimation, population inference,
model selection.

3. (week 3) Stochastic processes and sampling in python

– Stochastic processes, optimal filtering, signal-to-noise ratio, sensitivity curves.

– Introduction to using python and pystan for sampling probability distributions.

4. (week 4) Introduction to machine learning (lectured by Stephen Green)

Lecture notes and problem sets

Lecture notes will be provided for the whole course. Sections in the notes that are marked
with a star will not be covered in lectures, but provide additional information that can be
studied in your own time. In addition notes will be provided on three advanced topics that
were included in the previous incarnation of this course, but will not be covered this year.
Again, this material can be studied or used as a reference, but it is optional. The advanced
topics are

• Time series analysis: auto-regressive processes, moving average processes, ARMA mod-
els.

• Nonparametric regression: kernel density estimation, smoothing splines, wavelets.

• Gaussian processes, Dirichlet processes.

Three problem sets will be made available, one for each week of the course. Questions
marked with an asterix are either more difficult or similar to other questions and are not
compulsory.
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Part I: Frequentist Statistics

1 Random variables

In classical physics most things are deterministic. There are physical laws governing the
evolution of a system which can be solved and used to predict the state of the system
in the future. In reality there are many situations in which things are not (or effectively
not) deterministic, and so the outcome of an experiment cannot be predicted with certainty.
However, if the experiment is repeated many times some outcomes will occur more frequently
than others. This notion of in-deterministicity in measurements is encoded in the concept
of a random variable. A random variable, X, is a quantity that, when observed, can take
one of a (possibly infinite) number of values. Prior to making a measurement the value of
the random variable cannot be predicted, but the relative frequency of the outcomes over
many experiments are described by a probability distribution. The value that X takes in a
particular observation (or experiment), xi, say is called a realisation of the random variable.

Random variables can be discrete, in which case the values that the variable takes are
drawn from a countable set of discrete possibilities, or continuous in which case the random
variable may take on any value within one or more ranges.

1.1 Discrete random variables

A discrete random variable X can take on any of a (possibly infinite but countable) set of
possible values, {x1, x2, . . .)}, which together comprise the sample space. The probability
that X takes any particular value is represented by a probability mass function (pmf), which
is a set of numbers {pi} with the properties 0 ≤ pi ≤ 1 for all i and

∑
pi = 1. The probability

that X takes the value xi is pi.

1.2 Examples of discrete random variables

1.2.1 Binomial and related distributions

The Binomial distribution is the distribution of the number of success in n trials for which
the probability of success in one trial is p. We write X ∼ B(n, p) and

P (X = k) = pk =


(
n
k

)
pk(1− p)n−k if k ∈ {1, . . . , n},

0 otherwise
. (1)

When n = 1 this is the Bernoulli distribution. The binomial distribution is the distribution of
the sum of n Bernoulli trials, i.e., the number of “successes” in n trials. A related distribution
is the negative binomial distribution which has pmf

P (X = k) = pk =


(
k + r − 1

k

)
pk(1− p)r if k ∈ {0, 1, . . .},

0 otherwise
. (2)

This is the distribution of the number of successes in a sequence of Bernoulli trials that will
be observed before r failures have been observed. Setting r = 1 and p→ (1− p) this is the
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geometric distribution, which is the distribution of the number of trials required before the
first success.

Another generalisation of the Binomial distribution is the multinomial distribution. In
this case the outcome of a trial is not a binary ‘success’ or ‘fail’, but it is one of k pos-
sible outcomes. The probability of each outcome is denoted pi with

∑k
i=1 pi = 1 and the

multinomial distribution describes the probability of seeing n1 occurrences of outcome 1, n2

occurrences of outcome 2 etc. in n trials. The pmf is

P ({n1, . . . , nk}) =

{
n!

n1!n2!...nk!
pn1

1 p
n2
2 . . . pnkk if ni ≥ 0 ∀i and

∑k
i=1 ni = n

0 otherwise
. (3)

Applications: counting problems, e.g., distribution of events in categories or time, trials
factors.

1.2.2 Poisson distribution

This is the distribution of the number of occurrences of some event in a certain time interval
if that event occurs at a rate λ. The quantity X follows a Poisson distribution, X ∼ P (λ) if

P (X = k) = pk =

{
λke−λ/k! if k ∈ {0, 1, . . .},
0 otherwise

. (4)

The Poisson distribution is the limiting distribution of B(n, p) as n→∞, p→ 0 with np = λ
fixed.

Applications: distribution of number of events in a population, e.g., gravitational wave
sources.

1.3 Continuous random variables

A continuous random variable can take any (usually real, but the extension to complex
RVs is straightforward) value within some continuous range, or some set of ranges, which
together comprise the sample space X . The probability that X takes a particular value is
characterised by the probability density function (pdf), p(x). The probability that X takes
a value in the range x to x + dx is p(x)dx. The pdf has the properties 0 ≤ p(x) ≤ 1 for all
x ∈ X and ∫

x∈X
p(x)dx = 1. (5)

For single valued random variables with non-disjoint sample spaces continuous random vari-
ables may also be characterised by the cumulative density function or CDF, defined as

P (X ≤ x) =

∫ x

−∞
p(x)dx. (6)

1.3.1 Uniform distribution

X is uniform on an interval (a, b), denoted X ∼ U [a, b] if the pdf is constant on the interval
[a, b]

p(x) =

{
1
b−a if x ∈ [a, b]

0 otherwise
. (7)

X takes values only in the range [a, b].
Applications: often used as an “uninformative” prior in parameter estimation.
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1.3.2 Normal distribution

X is Normal with mean µ and variance σ2, denoted X ∼ N(µ, σ2) if the pdf has the form

p(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
. (8)

X takes all values in the range (−∞,∞). If µ = 0 and σ2 = 1 we say that X follows a
standard Normal distribution.

Applications: distribution of noise fluctuations in a gravitational wave detector, priors
on mass distribution, most common distribution to assume in parametric statistics.

1.3.3 Chi-squared distribution

X is chi-squared with k degrees of freedom, denoted X ∼ χ2(k) or χ2
k is the pdf has the form

p(x) =
1

2k/2Γ(k/2)
x
k
2
−1e−

x
2 (9)

Here Γ(n) is the Gamma function, defined by

Γ(n) =

∫ ∞
0

xn−1e−xdx (10)

and such that Γ(n+ 1) = n!. X takes non-negative real values only, x ∈ [0,∞). This is the
distribution of the sum of the squares of n independent standard normal distributions.

There is also a non-central chi-square distribution which depends on two parameters —
degrees of freedom, k > 0, as before plus a non-centrality parameter, λ > 0. This has the
pdf

p(x) =
1

2
e−

(x+λ)
2

(x
λ

) k
4
− 1

2
I k

2
−1(
√
λx) (11)

where Iν(y) is the modified Bessel function of the first kind. The non-central chi-square
distribution again takes non-negative values only and arises as the distribution of the sum of
k independent normal distributions with equal (unit) variance, but non-zero means, denoted
µi. The non-centrality parameter is then λ =

∑k
i=1 µ

2
i .

Applications: used to test for deviations from normality, e.g., in noise fluctuations in a
gravitational wave detector.

1.3.4 Student’s t-distribution

X follows Student’s t-distribution with n > 0 degrees of freedom, X ∼ tn, if it has pdf

p(x) =
Γ
(
n+1

2

)
√
nπΓ

(
n
2

) (1 +
x2

n

)−n+1
2

. (12)

The Student t-distribution arises in hypothesis testing as the distribution of the ratio of
a standard Normal distribution to the square root of an independent χ2

n distribution, nor-
malised by the degrees of freedom. Specifically if X ∼ N(0, 1 and Y ∼ χ2

n then X/
√
Y/n

follows a tn distribution.
Applications: used for statistical test on significance of parameters in linear models,

used as a “heavy-tailed” distribution for robust parameter estimation, arises naturally when
marginalising over uncertainty in power-spectral density estimation.
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1.3.5 F-distribution

X follows an F-distribution with degrees of freedom n1 > 0 and n2 > 0 if it has pdf

p(x) =
1

B
(
n1

2
, n2

2

) (n1

n2

)n1
2

x
n1
2
−1

(
1 +

n1

n2

x

)−n1+n2
2

(13)

where B(a, b) is the beta function, which is given by

B(a, b) =

∫ 1

0

xa−1(1− x)b−1dx (14)

and is related to the Gamma function through B(a, b) = Γ(a)Γ(b)/Γ(a + b). The F-
distribution arises as the ratio of two independent chi-squared distributions with n2 and
n2 degrees of freedom.

Applications: arises primarily in analysis of variance to test differences between groups.

1.3.6 Exponential distribution

X is exponential with rate λ > 0, X ∼ E(λ) if it has pdf

p(x) =

{
λe−λx if x > 0
0 otherwise

(15)

X takes positive real values only, x ∈ (0,∞). The exponential distribution is the distribution
of the time that elapses between successive events of a Poisson process.

Applications: distribution of time lag between events, e.g., gravitational wave signals.

1.3.7 Gamma distribution

X is Gamma with parameters n > 0 and λ > 0, X ∼Gamma(n, λ), if it has pdf

p(x) =

{ 1
Γ(n)

λnxn−1e−λx if x > 0

0 otherwise
(16)

X takes positive real values only, x ∈ (0,∞). The Gamma distribution is the distribution
of of the sum of n exponential distributions with parameter λ.

Applications: conjugate distribution to the Poisson distribution, so useful in Bayesian
analysis of rates. Useful as prior distribution whenever variable has support on [0,∞).

1.3.8 Beta distribution

X is Beta with parameters a > 0 and b > 0, X ∼Beta(a, b), if it has pdf

p(x) =

{ 1
B(a,b)

xa−1(1− x)b−1 if 0 < x < 1

0 otherwise
(17)

X takes values in the range x ∈ (0, 1) only.
Applications: conjugate to binomial distribution. Useful as prior when variable has

support on [0, 1], e.g., for probabilities.
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1.3.9 Dirichlet distribution

The Dirichlet distribution is a multivariate extension of the Beta distribution. A realisation of
a Dirichlet random variable is a set of K values, {xi}, satisfying the constraints 0 < xi < 1 for
all i and

∑K
i=1 xi = 1. The Dirichlet distribution is characterised by a vector of concentration

parameters ~α = (α1, . . . , αK) satisfying αi > 0 for all i and has pdf

p(x) =
1

B(~α)

K∏
i=1

xαi−1
i , where B(~α) =

∏K
i=1 Γ(αi)

Γ
(∑K

j=1 αj

) . (18)

Applications: infinite dimensional generalisation is a Dirichlet process which is used
as a distribution on probability distributions. Very important in Bayesian nonparametric
analysis.

1.3.10 Cauchy distribution

X follows a Cauchy distribution (also known as a Lorentz distribution) with location param-
eter x0 and scale parameter γ > 0, if it has pdf

p(x) =
1

πγ

[
1 +

(
x−x0
γ

)2
] . (19)

X takes any real value x ∈ (−∞,∞). The Cauchy distribution arises as the distribution of
the x intercept of a ray issuing from the point (x0, γ) with a uniformly distributed angle. It
is also the distribution of the ratio of two independent zero-mean Normal distributions.

Applications: used to model distributions with sharp features. In a gravitational wave
context it is used as a model for lines in the spectral density of gravitational wave detectors,
for example in BayesLine (and hence BayesWave).

1.4 Properties of random variables

The pdf (or pmf) of a random variable tells us everything about the random variable. How-
ever, it is often convenient to work with a smaller number of quantities that summarise the
properties of the distribution. These characterise the ‘average’ value of a random variable
and the spread of the random variable about the average. We summarise a few of these quan-
tities here. They all rely on the notion of an expectation value, denoted E. The expectation
value of a function, T (X), of a discrete random variable X is defined by

E(T (X)) =
∞∑
i=1

pit(xi). (20)

A similar definition holds for continuous random variables by replacing the sum with an
integral

E(T (X)) =

∫ ∞
−∞

p(x)t(x)dx. (21)
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1.4.1 Quantities representing the average value of a random variable

• Mean The mean, often denoted µ, is the expectation value of X, µ = E(X).

• Median The median, m, is the central value of the distribution in probability, i.e., a
value such that the probability of obtaining a value smaller than that or larger than
that is (roughly) equal. For discrete random variables m = xk, where∑

i:xi<xk

pi < 0.5 and
∑

i:xi≤xk

pi ≥ 0.5. (22)

For continuous random variables m is the value such that∫ m

−∞
p(x)dx =

∫ ∞
m

p(x)dx =
1

2
. (23)

• Mode The mode, M , is the ‘most probable’ value of the random variable. For discrete
random variables

M = argmaxi∈Xpi (24)

and for continuous random variables

M = argmaxx∈Xp(x). (25)

The mode may not be unique.

1.4.2 Quantities representing the spread of a random variable

• Variance The variance, often denoted σ2, is the expectation value of the squared
distance from the mean, i.e.,

Var(X) = E
[
(X − E(X))2] . (26)

• Standard deviation The standard deviation is simply the square root of the variance,
usually denoted σ.

• Covariance When considering two random variables, X and Y say, the covariance is
defined as the expectation value of the product of their distance from their respective
means, i.e.,

cov(X, Y ) = E [(X − E(X)) (Y − E(Y ))] . (27)

Here the expectation value is taken with respect to the joint distribution (see section
on independence below).

• Skewness Given the mean, µ, and variance, σ2, defined above, the skewness of a
distribution is

γ1 = E

[(
x− µ
σ

)3
]
. (28)
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• Kurtosis In a similar way, kurtosis is defined as

Kurt(X) = E

[(
x− µ
σ

)4
]
. (29)

This measures the heaviness of the tails of the distribution of the random variable.
The kurtosis of the Normal distribution is 3, so it is common to quote excess kurtosis,
which is the kurtosis minus 3, i.e., the excess relative to the Normal distribution.

• Higher moments Higher moments can be defined in a similar way. The n’th moment
about a reference value c of a probability distribution is

E [(X − c)n] . (30)

Moments are usually defined with c taken to be the mean, µ, as in the definition of
skewness and kurtosis above.

1.4.3 Moment generating functions

A useful object for computing summary quantities of a probability distribution is the moment
generating function, MX(t), which is defined as

MX(t) = E
[
etX
]
t ∈ R. (31)

It is clear that derivatives of this function with respect to t, evaluated at t = 0, give successive
moments about zero of the distribution. Moment generating functions (MGFs) are defined
in the same way for both discrete and continuous random variables.

In Table 1 we list these various summary quantities for the probability distributions listed
earlier. Where quantities are not known in closed form they are omitted from this table.
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Distribution Mean Median Mode Variance Skewness Excess kurtosis MGF

Binomial(n, p) np bnpc b(n+ 1)pc np(1− p) 1−2p√
np(1−p)

1−6p(1−p)
np(1−p) (1− p+ pet)n

Poisson(λ) λ ≈ bλ+ 1
3
− 0.02

λ
c dλe − 1, bλc λ λ−

1
2 λ−1 exp [λ(et − 1)]

Uniform[a, b] 1
2
(a+ b) 1

2
(a+ b) all 1

12
(b− a)2 0 −6

5
etb−eta

t(b−a)

Normal(µ, σ2) µ µ µ σ2 0 0 exp
[
µt+ 1

2
σ2t2

]
χ2
n n ≈ n

(
1− 2

9n

)3
max(n− 2, 0) 2n

√
8
n

12
n

(1− 2t)−k/2

Student’s tn 0 0 0 n
n−2

0 for n > 3 6
n−4

for n > 4 —

F(n1, n2) n1

n2−2
— n2(n1−2)

n1(n2+2)

2n2
2(n1+n2−2)

n1(n2−2)2(n2−4)

(2n1+n2−2)
√

8(n2−4)

(n2−6)
√
n1(n1+n2−2)

see caption —

E(λ) 1
λ

ln 2
λ

0 1
λ2

2 6 λ
λ−t

Gamma(n, λ) n
λ

— n−1
λ

n
λ2

2√
n

6
n

(
1− t

λ

)−n
Beta(a, b) a

a+b
I

[−1]
1
2

(a, b) a−1
a+b−2

ab
(a+b)2(a+b+1)

2(b−a)
√
a+b+1

(a+b+2)
√
ab

see caption see caption

Dirichlet (K, ~α) αi∑K
j=1 αj

— αi−1∑K
j=1 αj−K

ᾱi(1−ᾱi)
α0+1

— — —

Cauchy (x0, γ) undefined x0 x0 undefined undefined undefined does not exist

Table 1: Summary of important properties of common probability distributions. The excess kurtosis of the F distribution is 12n1(5n2−
22)(n1 + n2 − 2) + (n2 − 4)(n2 − 2)2/[n1(n2 − 6)(n2 − 8)(n1 + n2 − 2)]. For the Beta(a, b) distribution, the excess kurtosis is 6[(a −
b)2(a+ b+ 1)− ab(a+ b+ 2)]/[ab(a+ b+ 2)(a+ b+ 3)] and the MGF is 1 +

∑∞
k=1

(∏k−1
r=0

a+r
a+b+r

)
tk

k!
. For the Dirichlet distribution, the

mean and variance are quoted for one component of the distribution, xi, the parameters α0 =
∑K

j=1 αj and ᾱi = αi/
∑K

j=1 αj and the
covariance cov(xi, xj) = −ᾱiᾱj/(1 + α0).
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1.5 Independence

Most of the random variables described above are single valued, but a few of them, e.g., the
multinomial and Dirichlet distributions, return multiple values. In other situations, several
random variables might be evaluated simultaneously, or sequentially, or the same random
variable might be observed multiple times. When dealing with multiple random variables,
covariance as introduced above is an important concept, as is independence. A set of random
variables {X1, . . . , XN} are said to be independent if

P (X1 ≤ x1, X2 ≤ x2, . . . , XN ≤ xN) = P (X1 ≤ x1)P (X1 ≤ x1) . . . P (X1 ≤ x1) ∀ x1, x2, . . . , xN .
(32)

In terms of the pdf (or pmf) the random variables are independent if their joint distribution
p(x1, . . . , xN) can be separated

p(x1, . . . , xN) = pX1(x1)pX2(x2) . . . pXN (xN). (33)

Independence of two random variables implies that the covariance is 0, but the converse is
not true except in certain special cases, for example for two Normal random variables.

A set of variables {Xi} is called independent identically distributed or IID if they are
independent and all have the same probability distribution. This situation arises often, for
example when taking multiple repeated observations with an experiment.

1.6 Linear combinations of random variables

Suppose X1, . . . , XN are (not necessarily independent) random variables and consider a new
random variable Y defined as

Y =
N∑
i=1

aiXi. (34)

For any set of random variables

E(Y ) =
N∑
i=1

aiE(Xi), Var(Y ) =
N∑
i=1

a2
iVar(Xi) +

∑
i 6=j

aiajcov(Xi, Xj). (35)

If the random variables are independent then the variance expression simplifies to

Var(Y ) =
N∑
i=1

a2
iVar(Xi) (36)

and the moment generating function of Y can be found to be

MY (t) =
N∏
i=1

MXi(ait). (37)

A commonly used linear combination of random variables is the sample mean of a set of IID
random variables, defined as

µ̂ =
1

N

N∑
i=1

Xi (38)

for which

E(µ̂) = E(X1), Var(µ̂) =
1

n
Var(X1), Mµ̂(t) =

(
MX1

(
t

N

))N
. (39)
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1.7 Laws of large numbers

Suppose that X1, . . . , Xn are a sequence of IID random variables, each having finite mean µ
and variance σ2. We denote the sum of the random variables by

Sn =
n∑
i=1

Xi, which implies E(Sn) = nµ, Var(Sn) = nσ2. (40)

Laws of large numbers tells us that the sample mean becomes increasingly concentrated
around the mean of the random variable as the number of samples tends to infinity.

1.7.1 Weak law of large numbers

The weak law of large numbers states that, for ε > 0,

P

(∣∣∣∣Snn − µ
∣∣∣∣ > ε

)
→ 0, as n→∞. (41)

1.7.2 Strong law of large numbers

The strong law of large numbers states simply

P

(
Sn
n
→ µ

)
= 1. (42)

1.7.3 Central limit theorem

In many applications, people assume that the data generating process is Normal. This is
partially because the Normal distribution is convenient to work with and has many nice
properties, but also because regardless of the distribution large samples of random variables
tend to look quite Normally distributed. This fact is encoded in the Central Limit Theorem,
which states that the standardized sample mean, S∗n, is approximately standard Normal in
the limit n→∞

S∗n =
Sn − nµ
σ
√
n

. (43)

Formally the statement of the central limit theorem is

limn→∞P (a ≤ S∗n ≤ b) = Φ(b)− Φ(a) = limn→∞P (nµ+ aσ
√
n ≤ Sn ≤ nµ+ bσ

√
n). (44)
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2 Frequentist statistics

In the last section we discussed the notion of a random variable. When observing phenomena
in nature or performing experiments we would like to deduce the distribution of the random
variable, i.e., the probability distribution from which realisations of that random variable are
drawn. In parametric inference we assume that the distribution of the random variable
takes a particular form, i.e., it belongs to a known family of probability distributions. All
of the distributions that were described in the previous section are characterised by one or
more parameters and so inference about the form of the distribution reduces to inference
about the values of those parameters.

In frequentist statistics we assume that the parameters characterising the distribution are
fixed but unknown. Statements about the parameters, for example significance and confidence
are statements about multiple repetitions of the same observation, with the parameters fixed.
Key frequentist concepts are statistics, estimators and likelihood.

A statistic is a random variable or random vector T = t(X) which is a function of X
but does not depend on the parameters of the distribution, θ. Its realised value is t = t(x).
In other words a statistic is a function of observed data only, not the unknown parameters.

An estimator is a statistic used to estimate the value of a parameter. Typically the ran-
dom vector would be a set of IID random variables, X1, . . . , Xn with pdf p(x| θ). A function

θ̂(X1, . . . , Xn) of X1, . . . , Xn used to infer the parameter values is called an estimator of θ;

note that θ̂ is a random variable with a sampling distribution in this latter context. The
value of the estimator at the observed data θ̂(x1, . . . , xn) is called an estimate of θ.

A statistic might also be used to provide an upper or lower limit for a confidence interval
on the value of a parameter, or to evaluate the validity of a hypothesis in hypothesis testing.

2.1 Likelihood

Likelihood is central to the theory of frequentist parametric inference.
If an event E has probability which is a specified function of parameters ~θ, then the

likelihood of E is P(E| ~θ), regarded as a function of ~θ.

The likelihood, denoted L(~θ; x), is functionally the same as the pdf of the data generating

process, the difference is that the likelihood is regarded as a function of the parameters ~θ
while the pdf is regarded as a function of the observed data, x. It is often convenient to
work with the log likelihood

l(θ; x) = ln[L(θ; x)] = ln[p(x| θ)] (θ ∈ Θ)

Another useful quantity is the score
∂l

∂θi

which is a vector that is also regarded as a function of ~θ with the data fixed at the observed
values.

One interpretation of likelihood is that, given data x, the relative plausibility of or support
for different values ~θ1, ~θ2 of ~θ is expressed by

L(~θ1; x)

L(~θ2; x)
or l(~θ1; x)− l(~θ2; |x).
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As a result, inferences are unchanged if L(~θ|x) is multiplied by a positive constant (possibly
depending on x).

Typically we will be interested in cases where we observe more than one independent
realisation of the random variable. For discrete random variables the combined likelihood is
then the product of the likelihoods of each observed event.
Example: Poisson distribution

We observe a set {x1, . . . , xn}, of n IID observations from a Poisson distribution with
parameter λ. Denoting nx̄ =

∑n
j=1 xj the likelihood is

L(θ; x) =
e−nλλnx̄∏

j xj!
(λ > 0)

l(λ; x) = log (L(λ; x)] = −nλ+ nx̄ lnλ− ln(
∏
j

xj!)

For continuous random variables the joint likelihood can usually be written as

L(θ; x) =
n∏
j=1

p(xj| θ) ⇒ l(θ; x) =
n∑
j=1

l(xj| θ).

or just p(x| θ) for a vector x of random variables that are not IID. One case where this
does not necessarily hold is when measurements are imperfect. Typically we cannot observe
a quantity with infinite precision, but inevitably round to the nearest measurement unit. Ob-
servations of continuous random variables therefore typically involve grouping measurements
into bins.

Suppose random variables X1, . . . , Xn are IID with cumulative distribution function
P (x| ~θ) and we observe that there are n1, . . . , nk observations in each of the k intervals
(a0, a1], . . . , (ak−1, ak], where −∞ ≤ a0 < a1 < . . . < ak ≤ ∞ and P(a0 < Xj ≤ ak) = 1.

The distribution of (N1, . . . Nk) is Multinomial with parameters (n, p1(~θ), . . . pk(~θ)) with

pr(~θ) = P(ar−1 < Xj ≤ ar| ~θ) = P (ar| ~θ)− P (ar−1| ~θ),

and the likelihood is given by (3). For example, with common distribution N(µ, σ2) we have

pr(µ, σ
2) = Φ

(
ar − µ
σ

)
− Φ

(
ar−1 − µ

σ

)
.

If observations of the IID random variables are made with a resolution (or maximum
grouping error )of ±1

2
h, then we are effectively in the above situation, and a recorded value

x represents a value in the range x ± 1
2
h. Assuming that the grouping error is small, the

likelihood is

n∏
j=1

{P (xj +
1

2
h| θ)− P (xj −

1

2
h| θ)}. (45)

If p(x| θ) does not vary too rapidly in each interval (xj − 1
2
h, xj + 1

2
h) then (45) can be

approximated by
n∏
j=1

{hp(xj| θ)},
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or, ignoring the constant hn,

L(θ; x) '
n∏
j=1

p(xj| θ).

which is the result we wrote down when there was no grouping error. However, this argument
can fail, as illustrated in the two examples below.

Examples where this approximation fails

• Single observation from N(µ, σ2)

L(µ, σ|x) = Φ

{
x+ 1

2
h− µ
σ

}
− Φ

{
x− 1

2
h− µ
σ

}
(46)

'
h exp

(
−1

2
(x−µ)2

σ2

)
√

2πσ
(47)

if σ > h. If µ = x and σ → 0, (46)→ 1 but (47)→∞.

• Uniform distribution on [0, θ], U(0, θ)
If X1, . . . , Xn are IID with pdf given by

p(x| θ) =

{
1
θ

(0 < x ≤ θ)
0 otherwise

then

p(x| θ) =

{
1
θn

(0 < x(n) ≤ θ)
0 otherwise

where x(i) denotes the i’th element in the ordered sequence of {xi}. The likelihood is

L(θ; x) '
{

0 (θ < x(n))
1
θn

(θ ≥ x(n))
(48)

Taking account of a grouping error of ±1
2
h, the probability assigned to (xj− 1

2
h, xj+

1
2
h)

is {
h
θ

(xj + 1
2
h < θ)

θ−xj+ 1
2
h

θ
(xj − 1

2
h ≤ θ < xj + 1

2
h)

and, if h ≤ x(n) − x(n−1),

L(θ; x) ∝


0 (θ < x(n) − 1

2
h)

[(θ−x(n)+ 1
2
h)/h]

a

θn
(x(n) − 1

2
h ≤ θ < x(n) + 1

2
h)

1
θn

(θ > x(n) + 1
2
h)

(49)

where a is the number of observations equal to x(n). The continuous likelihood (Eq. (48))
and the likelihood accounting for grouping error (Eq. (49)) are shown in Figure 1.

Ignoring grouping, x(n) is the ML estimator and has variance of order n−2; with group-
ing the asymptotic variance is the usual O(n−1).

To summarise: if the precision of observing the data (h) is much smaller than the variabil-
ity of the data (e.g. than the standard deviation) then it is fine to use the approximation of
the likelihood by the density. However, if the precision h is comparable with the variability,
in order to estimate the unknown parameters reliably, one has to use the discrete version of
the likelihood.
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Grouping likelihood

Figure 1: The continuous likelihood for the parameter, θ, of the uniform distribution, as given
in Eq. (48), based on n = 5 observations with maximum observed value x(n) = 5.4 (solid
purple line). Also shown is the likelihood including grouping error, as given in Eq. (49),
assuming that results are rounded to one decimal place, h = 0.1, and there are a = 2
observations equal to 5.4 (dashed green line).
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2.2 Sufficient statistics

If a parametric form is assumed for the distribution of X, then there may exist a lower
dimensional function of the vector of observations x that contains the same information on
the value of ~θ as vector x. Such a function is called a sufficient statistic.

2.3 Definition

Suppose a random vector X has distribution function in a parametric family {P (x| θ); θ ∈ Θ}
and realized value x. A statistic (recall this just means a function of observed data only)

is said to be sufficient for ~θ if the distribution of X given S does not depend on ~θ, i.e.
pX|S(X|s, ~θ) does not depend on ~θ. Note that

(i) if S is sufficient for ~θ, so is any one-to-one function of S.

(ii) X is trivially sufficient.

Examples

• Bernoulli trials : X1, . . . , Xn take values 0 or 1 independently with probabilities 1−p
and p; n is fixed.

pX(x| p) =
n∏
j=1

pxj(1− p)1−xj = p
∑
xj(1− p)n−

∑
xj (50)

If S = X1 + · · · +Xn, then S has the Binomial p.d.f.

pS(s| p) =

(
n
s

)
ps(1− p)n−s (s = 0, 1, . . . , n)

and the p.d.f. of X given S is

pX|s(x|s) =
P(X1 = x1, . . . , Xn = xn, X1 + · · · +Xn = s| θ)

P(X1 + · · · +Xn = s)

=

{
pX(x| p)
pS(s| p) (

∑
xj = s)

0 (
∑
xj 6= s)

=


(
n
s

)−1

(
∑
xj = s)

0 (
∑
xj 6= s)

This does not depend on p, so S is sufficient for p.

For example, in the case when n = 3 the conditional p.d.f of x = (x1, x2, x3) given
s =

∑
xi is as follows:
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Sample s =
∑
xi

(y1, y2, y3) 0 1 2 3
(0 0 0) 1 0 0 0
(1 0 0) 0 1

3
0 0

(0 1 0) 0 1
3

0 0
(0 0 1) 0 1

3
0 0

(1 1 0) 0 0 1
3

0
(1 0 1) 0 0 1

3
0

(0 1 1) 0 0 1
3

0
(1 1 1) 0 0 0 1

• Pois(λ) , S = X1 + · · · +Xn has distribution Pois(nλ) and p.d.f.

pS(s|λ) =
e−nλ(nλ)s

s!
,

so the distribution of X given s has p.d.f.

pX|s(X|s) =

 pX(x|λ)
pS(s|λ)

=
e−nλλ

∑
xj (

∏
j xj !)

−1

e−nλ(nλ)s
s!

= n−ss!∏
j xj !

(
∑
xj = s)

0 (
∑
xj 6= s)

,

which does not depend on λ (it is a multinomial distribution), so S is sufficient for λ.

Interpretation of sufficiency: If S is sufficient for ~θ, we can argue that x contains no
information on ~θ beyond what is contained in the value s of S, i.e. all the information in X
about ~θ is contained in s. This suggests that inferences about the value of ~θ should be based
on the value of s. The rest of the information in y is still relevant to testing the correctness
of the assumed parametric family, e.g., by a residual analysis. Sufficiency leads to replacing
x by s and hence to a reduction in the data, so there is an advantage in using statistical
models and designs which lead to sufficient statistics of low dimensionality.

2.4 Recognizing sufficient statistics: Neyman Factorization The-
orem

Theorem 2.1. (Neyman Factorization Theorem). Let X = (X1, . . . , Xn) ∼ p(x| ~θ). Then,

statistic s = s(X1, . . . , Xn) is sufficient for θ iff there exist functions h of x and g of (s, ~θ)
such that

p(x | ~θ) = L(~θ; x) = g(s(x), ~θ)h(x) ∀~θ ∈ Θ, x ∈ X (51)

Proof. Proof (discrete case only).

If s is sufficient, then the conditional p.d.f. pX|S(x|s) does not depend on ~θ and we can
take h(x) to be pX|S(x|s) and g(s; θ) to be fS(s| θ). Then

L(~θ; x) = pX(x| ~θ) = P(X = x| ~θ)
= P(X = x &S = s(x) | ~θ)
= P(X = x|S = s(x), ~θ)P(S = s(x)| ~θ)
= P(X = x|S = s(x))P(S = s(x)| ~θ) [since S is sufficient]

= h(x)g(s(x), ~θ).
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Conversely, if (51) holds, then for any given s there is a subset As of X in which s(x) = s;
for x in As

P(X = x|S = s, ~θ) =
fX(x| ~θ)∑

z∈As fX(z| ~θ)
=

h(x)∑
z∈As h(z)

,

while for x 6∈ As P(X = x|S = s, ~θ) = 0. Thus the conditional distribution does not depend

on ~θ, i.e. S is sufficient for ~θ.

Note: the statistic s(x) divides the sample space X into equivalence classes As (one for
each value of s). This partitioning of X is unchanged if s is replaced by any one-to-one
function of s.

Examples

• Bernoulli trials
L(p; x) = p

∑
xj(1− p)n−

∑
xj ,

so if s(x) =
∑
xj, we could take h(x) = 1, g(s, p) = ps(1− p)n−s

[or, alternatively, we could take h(x) =

(
n
s

)−1

, g(s, p) =

(
n
s

)
ps(1− p)n−s ].

• Pois(λ), with s =
∑
xi we have the factorization

L(λ; x) = (
∏

xj!)
−1 · e−nλλs

• The Gamma distribution Γ(α, λ)

pX(x|α, λ) =
n∏
j=1

[
λαxα−1

j e−λxj

Γ(α)

]
=
λnα(

∏
j xj)

α−1e−λ
∑
xj

{Γ(α)}n
= 1 · λ

nα(s2)α−1e−λs1

{Γ(α)}n

Therefore, (s1, s2) = (
∑
xj,
∏
xj) is sufficient for (α, λ).

• In a gravitational wave context, reduced order models are used to form a basis for the
space of waveforms. Given a set {hi(t)} of basis functions that describe a waveform
model, the set {(d|hi)} of overlaps of the basis functions with the data are sufficient
statistics for deducing the waveform parameters.

2.5 Minimal sufficiency

(Non-trivial) sufficiency leads to a reduction in the data; sufficient statistics achieving the
greatest reduction are called minimal sufficient, i.e. a minimal sufficient statistic is a
function of all other sufficient statistics.

While such statistics are usually obvious, a general method for finding them is implied
from the following lemma.

Lemma 2.1. Consider the following partition of the sample space of X = (X1, . . . , Xn) ∈
X n: x,y ∈ X n belong to the same class of the partition if and only if L(~θ; x)/L(~θ; y) does

not depend on ~θ.
Then, any statistic defining this partition is minimal sufficient.



20 Introduction to Statistics for GWs

Example

• Weibull distribution: {X1, . . . , Xn} IID from Weibull with pdf

p(y|α, λ) = αλαxα−1 exp[−(λx)α] (x > 0;α, λ > 0)

Then

L(α, λ; x) = αnλnα(
n∏
j=1

xj)
α−1 exp(−λα

∑
xαj )

For L(α, λ; z)/L(α, λ; x) not to depend on α, λ, the zj must be some permutation of
the xj, but no other reduction in the data retains sufficiency, i.e. the order statistics
x(1) ≤ . . . ≤ x(n) are minimal sufficient.

2.6 Exponential families of distributions

A family of distributions indexed by a multivariate parameter ~θ ∈ Θ ⊂ Rp, is an exponential
family iff for some real-valued functions {Aj; j = 1 . . . , K}, {Bj; j = 1 . . . , K}, C,D the
pdf has the form

p(x| θ) = exp

{
K∑
j=1

Aj(x)Bj(~θ) + C(~θ) +D(x)

}
∀x, ~θ (52)

Given observations {x1, . . . , xn}, the set of K statistics {
∑n

j=1Ai(xj) : 1 ≤ i ≤ K} are

sufficient for ~θ and they are called the natural statistics of the exponential family

In fact, for a K-dimensional parameter ~θ, the minimal sufficient statistic vector is also K-
dimensional only for the distributions from the exponential family (under certain regularity
conditions, which are the same as those that apply for the validity of the Cramer-Rao
inequality described below).

Example. N(µ, σ2):

p(x|µ, σ) = exp

{
µσ−2x− 1

2
σ−2x2 −

(
1

2
µ2σ−2 + lnσ +

1

2
ln(2π)

)}
,

and B1(µ, σ) = µσ−2, B2(µ, σ) = −1
2
σ−2, A1(x) = x, A2(x) = x2. The vector S =

(
∑

i xi,
∑

i x
2
i ) based on sample (x1, . . . , xn) is sufficient for ~θ = (µ, σ).

2.7 Estimators

Recall that an estimator is a statistic (i.e., a function of data only) that is used to obtain an
estimate of one or more parameters of the underlying distribution. Often we consider point
estimators which are single valued functions θ̂(X1, . . . , Xn) of X1, . . . , Xn.

Examples of point estimators:

1. if θ = E(X), we can take θ̂ to be mean, median, mode of the empirical distribution;
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2. moment estimators, including the sample mean

µ̂ =
1

n

n∑
i=1

xi

and the sample variance

σ̂2 =
1

n− 1

n∑
i=1

(xi − µ̂)2 .

3. MLE - maximum likelihood estimator, which minimizes the score.

Typically there will be several possible estimators of a parameter θ. To choose between
estimators we will define various desirable properties: unbiasedness, consistency and effi-
ciency. Admissibility and sufficiency are also desirable properties but we won’t discuss these
here. Sufficiency of an estimator is closely related to sufficiency of a statistic. Robustness
and ease of computation are not considered in this course, but may be important in practical
applications.

2.7.1 Unbiasedness

Definition 2.1. θ̂ (r.v.) is an unbiased estimator of θ iff

E(θ̂) = θ.

If E(θ̂) 6= θ then θ̂ is a biased estimator and we define the bias function of θ̂ as

bias(θ̂) = E(θ̂)− θ.

As an example, suppose θ is a population mean, then the sample mean X̄ is unbiased. Also,
X1 (first observation in sample) is unbiased, and if the distribution is symmetric so is the
sample median.

There are often several unbiased estimators to choose from, but which is best?
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Unbiasedness is not necessarily required for all estimation problems, e.g.,

 0

 0.5
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 2
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θ1

θ2

True value θ̂1 (with wide density) and

θ̂2 (with narrow density)
are estimators of θ;
θ̂1 is unbiased;
θ̂2 is biased;
but θ̂2 may be preferred because it is
less likely to be a long way from θ.

Biased estimators may be preferred to unbiased estimators in some circumstances. A
good property is asymptotic unbiasedness.

Definition 2.2. θ̂ (r.v.) is asymptotically unbiased estimator of θ iff

E(θ̂)→ θ as n→∞.

2.7.2 Consistency

As sample size is increased the sampling pdf of any reasonable estimator should become
more closely concentrated about θ.

Definition 2.3. θ̂ is a (weakly) consistent estimator for θ if

P(| θ̂ − θ |> ε)→ 0 as n→∞

for any ε > 0.

For a particular problem, it may be difficult to verify consistency from this definition,
however, a sufficient (not necessary) condition for consistency is given in the lemma below.

Lemma 2.2. If var (θ̂)→ 0 and bias(θ̂)→ 0 as n→∞, then θ̂ is (weakly) consistent.

Definition 2.4. The mean square error of an estimator θ̂ is defined as

MSE(θ̂) = E[(θ̂ − θ)2] = var(θ̂) + [bias(θ̂)]2.

Mean squared error consists of two terms: variance of θ̂ and its squared bias.
The Markov inequality states that, for a non-negative random variable X and a > 0

P(X ≥ a) ≤ E(X)

a

which can be proved straightforwardly

E(X) =

∫ ∞
0

xp(x)dx =

∫ a

0

xp(x)dx+

∫ ∞
a

xp(x)dx ≥
∫ ∞
a

xp(x)dx ≥ a

∫ ∞
a

p(x)dx = aP(X ≥ a).
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Setting X = (θ̂ − θ)2 and a = ε2 we find

P[| θ̂ − θ |> ε] ≤ 1

ε2
E(θ̂ − θ)2.

The term on the right had side is the mean square error. If both bias and variance tend
to zero asymptotically, the mean square error tends to zero and therefore the left hand side
must tend to zero. Hence we have proven Lemma 2.2.

Examples

1. Estimation of the mean of a normal distribution: using the sample mean X̄ or median
or just the value of X1 (first observation in sample) are all unbiased estimators and
have variances σ2

n
, ασ

2

n
(α is a constant > 1) and σ2. Therefore the first two are

consistent. However, it is evident that X1 is not consistent as its distribution does not
change with sample size.

2. The Cauchy distribution with scale 1 and pdf p(x| θ) = π−1[1+(x−x0)2]−1. In this case,
the sample mean X̄ has the same distribution as any single Xi, thus P[| X̄ − x0 |> ε]
is the same for any n. This does not tend to zero as n→∞, and so X̄ is not (weakly)
consistent. (However, the sample median is a consistent estimator of x0.)

2.8 Efficiency

Definition 2.5. The efficiency of an unbiased estimator (θ̂) is the ratio of the minimum

possible variance to var(θ̂).

Definition 2.6. An unbiased estimator with efficiency equal to 1 is called efficient or a
minimum variance unbiased estimator (MVUE).

We can also define asymptotic efficiency of an (asymptotically) unbiased estimator (θ̂) is

the limit of the ratio of the minimum possible variance to var(θ̂) as sample size n→∞.

Definition 2.7. An estimator with asymptotic efficiency equal to 1 is called asymptoti-
cally efficient.

We can compare the efficiency of two estimators in the following way.

Definition 2.8. The (asymptotic) relative efficiency of two unbiased estimators θ̂1 and

θ̂2 is the reciprocal of the ratio of their variances, as sample size →∞: limn→∞
V ar(θ̂1)

V ar(θ̂2)
.

The definition of asymptotic relative efficiency can also be extended to asymptotically
unbiased estimators. These definitions are all fine, but they rely on knowing what the
smallest possible variance is. Under certain assumptions we can obtain this from the Cramér-
Rao inequality.
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2.8.1 Cramér-Rao lower bound (inequality)

The theorem below (Cramér-Rao inequality) provides a lower bound on the variance of an
estimator. When this lower bound is attainable for unbiased estimators, it can be used in
the definition of efficiency.

Regularity conditions for the Cramér-Rao inequality.

1. ∀θ1, θ2 ∈ Θ such that θ1 6= θ2, p(x | θ1) 6= p(x | θ2) [identifiability].

2. ∀θ ∈ Θ, p(x | θ) have common support.

3. Θ is an open set.

4. ∃∂p(x | θ)/∂θ.

5. E (∂ log p(X|θ)/∂θ)2 <∞.

Here I(θ) = E
(
∂ log f(X|θ)

∂θ

)2

is the Fisher information matrix.

Theorem 2.2. (Cramér-Rao inequality) Let X1, . . . , Xn denote a random sample from p(x| θ),

and suppose that θ̂ is an estimator for θ. Then, subject to the above regularity conditions,

var(θ̂) ≥
(
1 + ∂b

∂θ

)2

Iθ
,

where

b(θ) = bias(θ̂) and Iθ = E

[(
∂`

∂θ

)2
]
.

Comments

1. For unbiased θ̂, the lower bound simplifies to var(θ̂) ≥ I−1
θ .

2. Iθ is called Fisher’s information about θ contained in the observations.

3. Regularity conditions are needed to change the order of differentiation and integration
in the proof given below.

4. The result can be extended to estimators of functions of θ.

Proof of Theorem 2.2*.

E[θ̂] =

∫
. . .

∫
θ̂(x1, . . . , xn)

{
n∏
i=1

p(xi| θ)

}
dx

=

∫
. . .

∫
θ̂(x1, x2, . . . , xn)L(θ; x)dx

∫
. . .
∫

is a multiple integral with respect to x=(x1, x2, . . . , xn).
From the definition of bias we have

θ + b = E(θ̂) =

∫
. . .

∫
θ̂L(θ; x)dx.
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Differentiating both sides with respect to θ gives (using regularity conditions)

1 +
∂b

∂θ
=

∫
. . .

∫
θ̂
∂L

∂θ
dx

since θ̂ does not depend on θ. Since l = ln(L) we have

∂l

∂θ
=
∂ln(L)

∂θ
=

1

L

∂L

∂θ
, and thus

∂L

∂θ
= L

∂l

∂θ
.

Thus

1 +
∂b

∂θ
=

∫
. . .

∫
θ̂
∂l

∂θ
Ldx = E

(
θ̂
∂l

∂θ

)
.

Now use the result that for any two r.v.s Uand V ,

{cov(U, V )}2 ≤ var(U)var(V )

and let

U = θ̂, and V = ∂l/∂θ.

Then

E[V ] =

∫
. . .

∫
∂l

∂θ
Ldx =

∫
. . .

∫
∂L

∂θ
dx

=
∂

∂θ

(∫
. . .

∫
L dx

)
(using regularity conditions)

=
∂

∂θ
(1) = 0.

Hence

cov(U, V ) = E(UV ) = 1 +
∂b

∂θ
.

Similarly

var(V ) = E(V 2) = E

[(
∂l

∂θ

)2
]

= Iθ (by definition of Iθ)

and since var(U) = var(θ̂) we obtain the Cramér-Rao lower bound as

var(θ̂) ≥ {cov(U, V )}2

var(V )
=

(
1 + ∂b

∂θ

)2

Iθ
.

The Cramér-Rao lower bound will only be useful if it is attainable or at least nearly
attainable.
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Lemma 2.3. The Cramér-Rao lower bound is attainable iff there exists a function f(x) of
x only, and functions a(θ), c(θ) of θ only such that

∂l

∂θ
=

(f(x)− a(θ))

c(θ)
,

in which case θ̂ = f(x) attains it. The expectation value Eθθ̂ = a(θ) and da/dθ = c(θ)Iθ.

In the derivation of the Cramér-Rao bound, it is clear that equality will be attained if
and only if cov(U, V )2=var(U)var(V ), which holds if and only if U = a(θ) + c(θ)V . This
lemma and the following corollary follow directly from this.

Corollary 2.1. There is an unbiased estimator that attains the Cramér-Rao lower bound iff
there exists a function g(x) of x only such that

∂l

∂θ
= Iθ(g(x)− θ),

in which case the unbiased estimator θ̂ = g(x) attains it.

Lemma 2.4. Under the same regularity conditions as for the Cramér-Rao lower bound

Iθ = −E
[
∂2l

∂θ2

]
This result follows from integration by parts, and dropping a boundary term by assuming

that the probability density tends to zero asymptotically.

Example
X1, X2, . . . , Xn ∼ N(µ, σ2), σ2 known.
Likelihood for µ

L(µ; x) =
n∏
i=1

(2πσ2)−
1
2 exp

{
− 1

2σ2
(xi − µ)2

}
log likelihood for µ

l = logL = −n
2

log(2πσ2)− 1

2σ2

n∑
i=1

(xi − µ)2

Thus we have
∂l

∂µ
=

1

σ2

n∑
i=1

(xi − µ),
∂2l

∂µ2
= − n

σ2
,

and

Iθ = E
[
− ∂

2l

∂µ2

]
=

n

σ2
.

The lower bound for unbiased estimators is I−1
θ = σ2

n
. However,

var(X̄) =
σ2

n
,
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so X̄ attains its lower bound. No other unbiased estimator can have smaller variance than
X̄. Therefore X̄ is MVUE.

Alternatively, we can use Lemma 2.3, and

∂l

∂µ
=

1

σ2

∑
(Xi − µ) =

n

σ2
(X̄ − µ)

Therefore the bound is attainable.
Regularity conditions are essential to be able to use the lower bound. Consider the

uniform distribution case X1, X2, . . . , Xn ∼ U [0, θ]

L(θ; x) =

{
1
θn

0 ≤ x(1) ≤ x(2) ≤ . . . ,≤ x(n) ≤ θ
0 elsewhere

In the range where L is differentiable l = −n log θ

∂l

∂θ
= −n

θ
and

∂2l

∂θ2
=

n

θ2
.

Thus

Iθ = E

[(
∂l

∂θ

)2
]

=
n2

θ2

but

E
[
− ∂

2l

∂θ2

]
=
−n
θ2
.

Therefore the lower bound should be θ2

n2 , but

var

[
n+ 1

n
X(n)

]
=

θ2

n(n+ 2)
< I−1

θ .

The lower bound is violated because the regularity conditions don’t hold. In particular the
second condition is violated, since the support of the distribution depends on θ.

The derivation and examples above were all for a one dimensional parameter. The cor-
responding result for the multiple parameter case is

cov(ti, tj) ≥
∂mi

∂θk
[Iθ]
−1
kl

∂mj

∂θl
, [Iθ]ij = E

[
∂l

∂θi

∂l

∂θj

]
,

where t is the realised value of some multi-dimensional statistic T and m = ~θ + b = E(T).

2.9 Rao-Blackwell Theorem*

The Rao-Blackwell theorem gives a method of improving an unbiased estimator, and involves
conditioning on a sufficient statistic.

Theorem 2.3. (Rao-Blackwell theorem). Let X1, X2, . . . , Xn be a random sample of obser-
vations from a distribution with pdf p(x| θ). Suppose that S is a sufficient statistic for θ and

that θ̂ is any unbiased estimator for θ. Define θ̂S = E[θ̂ | S]. Then

(a) θ̂S is a function of S only;

(b) E[θ̂S] = θ;

(c) var θ̂S ≤ var θ̂.
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2.10 Maximum likelihood estimators

Definition 2.9. The maximum likelihood estimator (MLE) is defined by θ̂ = arg maxθ∈Θ L(θ; x) =
arg maxθ∈Θ `(θ; x).

If ∃∂`/∂θj and Θ is open, then the MLE θ̂ satisfies ∂`/∂θj(θ̂) = 0, j = 1, . . . , K, θ ∈ Θ ⊂
RK .

The MLE can be biased or unbiased but it is asymptotically unbiased and efficient and
it is also consistent. In fact the following lemma holds.

Lemma 2.5. Let X1, . . . , Xn ∼ p(x | θ) IID, θ ∈ Θ ⊂ RK. Under the regularity conditions
of Cramer-Rao inequality, the MLE asymptotically satisfies

θ̂ ∼ NK(θ, I−1
θ ) n→∞,

in particular, E(θ̂)→ θ and for K = 1, Var(θ̂)/I−1
θ → 1 as n→∞.

If there exists an unbiased efficient estimator this has to be the MLE.

Lemma 2.6. Suppose there exists an unbiased estimator θ̃ that attains Cramer-Rao lower
bound, and suppose that MLE θ̂ is the solution of ∂`

∂θ
= 0. Then, θ̃ = θ̂.

Proof. θ̃ is unbiased and attains Cramer-Rao lower bound, hence, by the corollary to Lemma 2.3,
∂`
∂θ

= Iθ(θ̃ − θ). Then, the only solution of ∂`
∂θ

= 0 is θ̃, that is, θ̃ = θ̂.

Thus, (under the regularity conditions of Cramer-Rao inequality) if the Cramer-Rao lower
bound is attainable, the MLE attains it, thus in this case the MLE is efficient. If the bound
is unattainable, then the MLE is asymptotically efficient.

2.11 Confidence intervals and regions

Point estimators provide single estimated values for parameters, but we usually also need an
estimate of the uncertainty in those estimated values. These are characterised by confidence
intervals. A confidence interval is a random variable since the ends of the interval are
typically determined as a function of the observed data. The interval has the property that
over many realisations of the same experiment, the intervals constructed randomly by this
procedure will contain the true value of the parameter a certain fraction of the time.

Formally a set Sα(X) is a (1− α) confidence region for ψ if

P(Sα(X) 3 ψ;ψ, λ) = 1− α ∀ψ, λ.

Thus, Sα(X) is a random set of ψ-values which includes the true value with probability 1−α.
If more than one value of α is considered, we usually require

Sα1(x) ⊃ Sα2(x) if α1 < α2. (53)

e.g. a 99% region contains the 95% region.
If ψ is a scalar and Sα(x) has the form {ψ : tα ≥ ψ} for some statistic tα, then tα is a

(1− α) upper confidence limit for ψ.
If ψ is a scalar and Sα(x) has the form {ψ : sα ≤ ψ} for some statistic sα, then sα is a α

lower confidence limit for ψ.
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If Sα(x) = {ψ : aα(x) ≤ ψ ≤ bα(x)}, it is a two-sided confidence interval.
A two-sided confidence interval is called equitailed if aα(x) is the α/2 lower confidence

limit and bα(x) is the 1− α/2 upper confidence limit.
A high density confidence region is {θ ∈ Θ : p(x|θ) ≥ Kα} where the constant Kα

is determined by the condition P{p(X|θ) ≥ Kα} = 1− α.
Confidence intervals/regions for estimators can be constructed by identifying pivotal

quantities. A pivotal quantity U = u(X, ψ) is a scalar function of X and ψ with the same
distribution for all ψ and λ. If uα is the upper α point of this distribution, then

P(u(X, ψ) ≤ uα) = 1− α,

so that the set {ψ : u(x, ψ) ≤ uα} defines a (1− α) confidence region for ψ.
If ψ is a scalar and u(mathbfx, ψ) is monotone in ψ, this yields a one-sided interval.

In this case we may also define two-sided intervals by {ψ : uαL ≤ u(x, ψ) ≤ uαU} with
αU − αL = 1− α.

Examples of pivotal quantities

• E(λ): 2θ
∑
Xj which has distribution χ2(2n);

• N(µ, σ2), inference about µ with σ unknown:
√
n(x̄ − µ)/s which has distribution

t(n− 1);

• Ratio of two Normal variances: (s2
1/σ

2
1)/(s2

2/σ
2
2) which has distribution F (n1−1, n2−1).
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3 Hypothesis testing

Often when we observed data we have some ideas about the random processes that are
generating the observations. Having collected data it is natural to test whether the observed
data are consistent with those expectations. The idea of hypothesis testing is to say if the
data provides sufficient evidence to rule out those assumptions. The emphasis is always
placed in favour of the assumptions, rather than the alternative. We require strong evidence
that the data are inconsistent with the assumptions before we reject them.

Formally, we suppose that we have data x = (x1, . . . , xn) and want to examine whether
they are consistent with a hypothesis H0 (the null hypothesis or hypothesis under test)
about the distribution function FX of X.

A hypothesis is simple if it defines PX completely:

H0 : PX = P0

otherwise, it is composite. If PX is parametric with more than one parameter, a composite
hypothesis might specify the values of some or all of them. (e.g. one regression coefficient)

The distribution of X under H0, P0, is called null distribution.
Examples of hypotheses

• A significant trigger in a gravitational wave detector is due to instrumental fluctuations.
This is a composite hypothesis as the distribution of triggers under the noise assumption
is not fully specified.

• The numbers of gravitational wave events x1, . . . , x7 observed on Monday, . . . , Sunday.
The null hypothesis is that all days are equally likely, i.e., the joint distribution is
Multinomial(n; 1

7
, . . . , 1

7
). This is a simple hypothesis.

• The right ascensions x1, . . . , xn angles of observed gravitational wave events. The
hyypothesis that the Xj’s are independently Uniform on [0, 2π) is simple.

Suppose we want to test that there is clustering around some angle, then we can assume
that the distribution is von Mises with pdf

p(x| θ, λ) =
1

2πI0(λ)
eλ cos(x−θ), x ∈ X = [0, 2π); λ ≥ 0, 0 ≤ θ < 2π;

for unknown λ. This is a composite hypothesis.

• The hypothesis that the number of gravitational wave events in each monthX1, . . . , Xn

are independently Poisson(θ) with unknown θ is composite.

3.1 Definitions and basic concepts

1. A sample of n observations is available to make inference about parameter θ.

2. We wish to decide between two hypotheses: H0, the null hypothesis, and H1, the
alternative hypothesis.

H0 is often simple (only one value is specified for θ)

i.e. H0 : θ = θ0 (e.g. H0 : µ = 100, H0 : p = 1
2
).



Introduction to Statistics for GWs 31

H1 can be simple: H1 : θ = θ1 but more commonly it is composite (more than one
value is allowed for θ). The most common alternatives are

H1 : θ < θ0 or H1 : θ > θ0 — one-sided/one-tailed alternative

or H1 : θ 6= θ0 — two-sided/two-tailed alternative.

3. Two possible decisions: to reject or not to reject H0 in favour of H1.

The decision whether or not to reject H0 is based on the value of a test statistic, which
is a function of the observations.

4. Values of the test statistic for which H0 is not rejected form the acceptance region, C̄.

Values of the test statistic for which H0 is rejected form the rejection region (or critical
region), C.

The form of these regions depends on the form of H1.

5. There are two possible types of error:

Reject H0 when H0 is true — Type I error
Fail to reject H0 when H0 is false — Type II error

The probability of Type I error, denoted by α, is the significance level (or size) of
the test.

The probability of Type II error, denoted by β, is only defined uniquely if H1 is simple.
In which case

η = 1− β is the power of the test.

For composite H1, η(θ) is the power function.

Generally we consider Type-I error (false rejection) to be worse than Type-II (incorrect
failure to reject) as usually in the latter case more data will be collected and the test will
be re-evaluated. It is therefore usual to specify the significance level of the test in order
to determine the threshold for rejection, or the quote a p-value (see next section) when
quoting test results.

We can define a test function φ(x) such that

φ(x) =

{
1 if t(x) ∈ C
0 if t(x) ∈ C̄

and when we observe φ(X) = 1, we reject H0. This function has the property that α =
EH0(φ(X)) and η = EH1(φ(X)), in which the subscript denotes the hypothesis under which
the expectation value is to be calculated.

For discrete distributions, the probability that the test statistic lies on the boundary of
the critical region, ∂C, may be non-zero. In that case, it is sometimes necessary to use a
randomized test, for which the test function is

φ(x) =


1 if t(x) ∈ C
γ(x) if t(x) ∈ ∂C
0 if t(x) ∈ C̄

for some function γ(x) and we reject H0 based on observed data x with probability φ(x).
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3.2 Test statistic

Often to construct a test (i.e. the decision whether to reject H0 or not based on observed
data x), a test statistic is used.

Definition 3.1. A real-valued function t(x) on X is a test statistic for testing H0 iff

(i) values of t are ordered with respect to the evidence for departure from H0

(ii) the distribution of T = t(X) under H0 is known, at least approximately. For composite
H0 the distribution should be (approximately) the same for all simple hypotheses making
up H0.

For any observation x, we measure the consistency of x with H0 using the significance
probability or the p-value, e.g. if larger values of t correspond to stronger evidence for
departure from H0, the p-value is defined by

p = P(T ≥ t(x)|H0),

the probability (under H0) of seeing the observed value of t or any more extreme value. The
smaller the value of p the greater the evidence against H0.

3.3 Alternative hypothesis

Can be specified or unspecified.

3.3.1 Pure significance tests

In a pure significance test, only the null hypothesis H0 is explicitly specified. The p-value
of the observed value under the null distribution is evaluated, and if it is sufficiently small,
the null hypothesis would be rejected. Such tests are done if we want to avoid specifying a
parametric family of alternative distributions.

There will often be multiple quantities that could be computed under the null hypothesis
and we can choose any of them to evaluated the distribution of the test statistic. The best
choice can be guided if we have a specific idea of the type of departure from H0 we are
looking for, e.g.,

• Directional data: Might look for a tendency for the observed directions to cluster about
a (possibly unknown) direction. But not a specific set of alternatives such as von Mises
distributions.

• Pois(θ): if the alternative is not a Poisson distribution, we might test whether variance
6= expectation.

An important class of pure significance tests are goodness of fit tests where either the
sample distribution function P̂X(x) = 1

n

∑n
i=1 I(x 6 xi) or the histogram are compared to

those of the null distribution.

Examples
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• Event frequency on different days: H0 : X1, . . . , X7 ∼ Mult(n; 1
7
, . . . , 1

7
).

With no particular alternative we might use Pearson’s χ2 test, comparing

X2 =
7∑
i=1

(
xi − n

7

)2

n
7

with χ2
6.

• Right ascension of GW sources: If alternative to H0 is clustering about the reference
direction (e.g. galactic centre) we could use

∑
cosxj, the projection onto the reference

axis of the resultant sum vector (
∑

cosxj,
∑

sinxj).

• Pois(θ) : might use index of dispersion,

d =

∑
(xi − ȳ)2

ȳ
,

which is approximately χ2 with (n− 1) degrees of freedom under H0 for θ ≥ 1.

Note that given
∑
Xj = s, the distribution of X1, . . . , Xn is Mult(s, 1

n
, . . . , 1

n
) and

d is the χ2 statistic for testing the fit of this distribution.

3.3.2 Specified alternative hypothesis

For a parametrised family of distributions p(x| θ), θ ∈ Θ, say H0 : θ = θ0, then

H1 : θ ∈ Θ1 ⊂ Θ \ {θ0},

e.g. θ 6= θ0 (two-sided), θ > θ0 or θ < θ0 (one-sided).
Below we consider two cases: with simple and composite alternative hypotheses (and a

simple null hypothesis).

With composite alternative hypotheses, the power of the test becomes the power function
defined over θ ∈ Θ1:

η(θ) = P(reject H0| θ) = Pθ(reject H0).

3.4 Critical regions

In § 3.2 we defined for each x ∈ X the significance probability

p = P(T ≥ t(x)|H0)

associated with a test statistic t. A different, but equivalent, approach defines a test using
critical regions rather than test statistics. This

(i) facilitates comparison of different tests of H0 according to their properties under H1;

(ii) is useful for establishing a connection between tests and confidence regions.

For any α in the interval (0, 1), a subset Rα of X is a critical region of size α if

P(X ∈ Rα|H0) = α (54)

Interpretations of Rα:
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(i) points in Rα are regarded as not consistent with H0 at level α;

(ii) points in Rα are “significant at level α”;

(iii) if x ∈ Rα, then H0 is “rejected” in a test of size α.

A significance test is defined by a set of critical regions {Rα : 0 < α < 1} satisfying

Rα1 ⊂ Rα2 if α1 < α2. (55)

Thus, for example, if data x are significant at the 1% level, they are also significant at the
5% level.

The significance probability (also called p-value) for data x is then defined as

P = inf(α; x ∈ Rα),

i.e. the smallest α for which x is significant at level α.
The definition of a test in §3.2 corresponds to critical regions of the form

Rt
α = {x : t(x) ≥ tα},

where tα is the upper α point of T = t(X) under H0, since

P(X ∈ Rt
α|H0) = P(t(X) ≥ tα|H0) = α,

by the definition of tα; also if α1 < α2 then tα1 > tα2 and Rt
α1
⊂ Rt

α2
satisfying (55). Finally,

P = P(t(X) ≥ t(x) : H0)

= inf(α; t(x) ≥ tα)

= inf(α; x ∈ Rt
α),

the smallest α for which x is significant at level α.

Example

• Xj independent N(µ, σ2) (σ known and hence =1 without loss of generality) To test
H0 : µ = µ0 vs µ > µ0, obvious test statistics are Ȳ or (Ȳ − µ0)

√
n. The significance

probability is

P = P
(
(Ȳ − µ0)

√
n > (ȳ − µ0)

√
n|H0

)
= 1− Φ((ȳ − µ0)

√
n).

The corresponding critical regions are Rα = {x : (ȳ − µ0)
√
n ≥ Φ−1(1− α)}. Thus

P(X ∈ Rα|H0) = P((Ȳ − µ0)
√
n ≥ Φ−1(1− α)) = α,

as required, and if α1 < α2, then Φ−1(1− α1) > Φ−1(1− α2), so that Rα1 ⊂ Rα2 . Also

inf(α; x ∈ Rα) = inf(α; (ȳ − µ0)
√
n ≥ Φ−1(1− α))

= inf(α;α ≥ 1− Φ((ȳ − µ0)
√
n)

= P.
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3.5 Construction of confidence intervals using critical regions

The construction of hypothesis tests leads naturally to the construction of confidence inter-
vals and regions. For any value ψ0 of ψ, let Rα(ψ0) be a size-α critical region for testing the
null hypothesis ψ = ψ0 against ψ 6= ψ0 (or possibly ψ < ψ0 or ψ > ψ0). For any x define

Sα(x) = {ψ0 : x 6∈ Rα(ψ0)}.

Then Sα(X) is a (1− α) confidence interval for ψ since

P(Sα(X) 3 ψ0;ψ0, λ) = P(X 6∈ Rα(ψ0) : ψ0, λ) = 1− α ∀ψ0, λ

[R̄α(ψ0) comprises x values judged consistent with ψ0 (at level α), so Sα(x) comprises ψ
values consistent with x.]

If α1 < α2, then from (19) {ψ0 : x ∈ Rα1(ψ0)} ⊂ {ψ0 : x ∈ Rα2(ψ0)}, so that (53) holds.
For scalar ψ, critical regions for alternatives ψ < ψ0 lead to upper confidence limits.

Example

• Exp(λ): Find the best size-α critical region for testing λ = λ0 against λ < λ0.

The best size-α critical region for testing λ = λ0 against λ < λ0 is Rα(λ0) = {x :∑
xj >

1
2
λ−1

0 χ2
2n(α)}. The corresponding (1 − α) confidence region for λ is {λ0 :∑

xj ≤ 1
2
λ−1

0 χ2
2n(α)} i.e. {λ0 : λ0 ≤ 1

2
(
∑
xj)
−1χ2

2n(α)}, so that 1
2
(
∑
xj)
−1χ2

2n(α)} is
the (1− α) upper confidence limit for λ.

3.6 Examples of hypothesis tests

We give three commonly encountered examples of hypothesis tests.

3.6.1 z-test

Suppose that we observe two independent samples

X1, . . . , Xn ∼ N(µ1, σ
2), Y1, . . . , Ym N(µ2, σ

2).

We assume additionally that σ2 is known and we are interested in testing the hypothesis

H0 : µ1 − µ2 = 0 versus H1 : µ1 − µ2 6= 0.

If the null hypothesis is violated we expect that the magnitude of the difference in sample
means, |X̄ − Ȳ |, will be large. The statistic

Z =

(
1

n
+

1

m

)− 1
2 (X̄ − Ȳ )

σ

follows a N(0, 1) distribution under the null hypothesis so we use a critical region of the form

|z| > zα
2

to define a test with significance α. Here zα
2

denotes the upper α/2 point in the Normal
distribution, i.e., the point such that

P(X ∼ N(0, 1) > zα
2
) =

α

2
.
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3.6.2 t-test

We now suppose that we want to test the same hypothesis as in the previous example, but
assuming that σ2 is not known. Once again, we expect the difference in sample means to be
large when the null hypothesis is false, but exactly how large now depends on the unknown
value of σ2. If we use the same test statistic, but with the known variance replaced by the
estimated value we have

T =

(
1

n
+

1

m

)− 1
2 (X̄ − Ȳ )

σ̂
where σ̂2 =

1

m+ n− 2

(
n∑
i=1

(Xi − X̄)2 +
m∑
j=1

(Yi − Ȳ )2

)
which follows a tm+n−2 distribution under the null hypothesis.

The critical region of a size-α test is to reject H0 when

|t| > tα
2
,

where zα
2

denotes the upper α/2 point in the t-distribution with m+n−2 degrees of freedom.

3.6.3 Analysis of variance: F-test

Suppose we have observations of random variables Xij where j = 1, . . . , ni labels different
observations of one particular group, and i = 1, . . . , k labels the different groups. We denote
the mean in each group by

X̄i• =
1

ni

ni∑
j=1

Xij

and the overall mean by

X̄•• =
1

N

∑
ij

Xij, N =
k∑
i=1

ni.

We are interested in testing that the means of all the groups are equal. If this is true then
we expect that the between samples sum of squares

SSb =
∑
i

ni(x̄i• − x̄••)2

is comparable to the within samples sum of squares

SSw =
∑
ij

(xij − xi•)2.

If the means are different then we expect the former to be larger than the latter. Therefore,
we reject the null hypothesis for large values of SSb/SSw. The quantity

F =
(N − k)SSb
(k − 1)SSw

follows an Fk−1,N−k-distribution under the null hypothesis and so our critical regions are of
the form to reject H0 when

F > Fk−1,N−k(α)

the upper α critical point of the Fk−1,N−k distribution.
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3.7 Calculating thresholds for tests

For the examples above the test statistics followed known distributions under the null hy-
pothesis and so the critical values can be directly calculated. This is not always possible. In
other situations it might be possible to compute the mean, µ, and variance, σ2, of the test
statistic, if not its full distribution. In that case, a Normal approximation can often be used
by appealing to the Central Limit Theorem.

Example: E(λ): we saw above that X =
∑
xj can be used for testing λ = λ0 versus

λ < λ0. While in this case we know the exact distribution of the test statistic, if we did not
we can approximate

X ∼ N

(
n

λ0

,
n

λ2
0

)
and reject the hypothesis at significance α if

λ0X − n√
n

> zα.

The power of the test can be approximated in a similar way, by writing down a Normal
approximation to the distribution of the test statistic under the alternative hypothesis.

If the mean and variance cannot be easily calculated, or the form of the test statistic
does not lend itself to approximation by the Central Limit Theorem, then usually the best
approach is to do a simulation study, i.e., generate many realisations of the test statistic
under H0 and determine thresholds numerically. In principle, the power of the test can be
evaluated in a similar way although this might not be practical for composite alternative
hypotheses.

3.8 Multiple testing

When presented with new data, there is a temptation to keep asking different questions of
the same data. When doing this you have to be careful to avoid multiple testing (or, in
the language of the gravitational wave community trials factors). If you keep carrying out
independent tests that have a significance of α then you would expect to reject a hypothesis
every 1/α tests purely by chance. Therefore, if you plan to carry out m independent tests
and want the overall significance to be α, the significance levels applied to the individual
tests must be lower.

If we carry out m independent tests, each with significance α, then the combined signif-
icance is

1− (1− α)m = αc.

To reach a target significance of the combined tests requires using individual tests with
significance α = 1 − (1 − αc)1/m = 1 − exp(log(1 − αc)/m) ≈ αc/m. The first expression is
the Ŝidák correction, while the latter correction is referred to as the Bonferroni correction.

It is also possible to not divide the total significance evenly between the different indi-
vidual tests. The Holm-Bonferroni method orders the individual test p-values and then tests
the i’th (starting from the smallest) at a significance level of αc/(m− i+ 1). This approach
gives better overall performance.

In practice, multiple tests on the same data will not be independent and so using the
corrections based on independence will be conservative and the true significance of any
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rejection of the null hypothesis will be greater (i.e., the true p-value will be smaller than
that estimated in this way). Understanding the dependency of multiple tests is typically
highly non-trivial so it is usually best to assess the true p-value of a testing programme
using simulations.

Another issue to be cautious of is changing the question based on the data. Changing
the question based on what was observed can lead to results appearing significant when they
are not, as the following example illustrates.

Example: LIGO/Virgo operate for 8 months from January to August and sees event
counts (1, 0, 0, 0, 0, 1, 1, 4). Are the 4 events in the last month unusual? A total of 7 events
have been observed in 8 months, so we have a rate of ∼ 7/8 per month. Assuming that the
events are Poisson distributed with this rate, the probability that a given month would have
4 or more events in it is ∼ 1.2%, which would be significant at the 5% level usually used
for hypothesis tests. But it is not fair to ask “Is four events in August unusual?”, since we
only decided to look at August in particular when we saw the data. The fair question to
ask is “Is four events in one of the months unusual”, which means we must multiply by 8 to
account for the fact that we have 8 potentially unusual months to choose from. The resulting
probability of ∼ 9.8% is much less significant 1. Note that it is perfectly fine, having made
these observations, to ask “Is August unusual in the next observing run?” and specifically
target the month that was an outlier in previous data in the next analysis. However, this
is less sensitive than doing the test “Is any month unusual?” on all of the data from both
observing runs together. Suppose in the next year we also take data from January to August
and observe events (0, 1, 0, 1, 1, 0, 0, 2). The probability of observing two or more events in
August, given the rate of 5/8 events per month, is 13%, so this would not be considered
significant. However, adding the two observing runs together we have (1, 1, 0, 1, 1, 1, 1, 6)
and the rate for binned observations is 4/3. The probability of seeing 6 or more events in a
Poisson distribution with rate 4/3 is 0.25%, which is significant 2.

3.9 Receiver operator characteristic

As mentioned above, Type-I errors are considered to be more serious than Type-II errors
and so tests are quoted by the significance level. However, there may be (infinitely) many
tests with the same significance, so how do we choose between them? This is done using the
power function. Clearly if one test is more powerful than another for the same significance
level then it is better and should be used.

In general, one way to compare different tests is by plotting a receiver operator charac-
teristic (ROC) curve. This is a plot of the power versus significance of a test, or equivalently
the “detection rate” of deviations in the null hypothesis against the “false alarm rate”. For
a random test, i.e., we toss a coin and, regardless of the observed data, say that if it is heads
we have made a detection, the ROC curve is the diagonal line. Tests that lie above the
line are more powerful than random at given significance, and so the further away from the
diagonal line the better the test is. ROC curves can be used to compare tests visually, or

1Another way to tackle this problem is to say that we expect the distribution of events across the 8
months to be Multinomial with equal probability of 0.125 in each month. The distribution of events in a
specific month is Binomial with n = 7 and p = 0.125 and so the probability that a specific event will have
four or more events out of the 7 is ∼ 0.6%, but this rises to ∼ 5.0% when we compute the probability that
one (unspecified) month has four or more events.

2In the multinomial analysis the probabilities are 12% and 0.18% respectively
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by computing the area between the curve and the diagonal line. Sometimnes the curves can
cross, so one test may be better at one significance level and another at another. The best
test then depends on what regime you are operating in.

In the following subsections we will present a number of results that describe how to find
tests that have the highest power at a given significance, under various assumptions about
the hypotheses and the underlying distributions. As we shall see below, it is not always
possible to find a test that is the best everywhere.

3.10 Designing the best test: simple null and alternative hypothe-
ses

Consider null and alternative hypotheses H0, H1 corresponding to completely specified
p.d.f.’s p0, p1 for X. For these hypotheses, comparison between the critical regions of different
tests is in terms of

P(X ∈ Rα|H1)

the power of a size-α critical region Rα for alternative H1. A best critical region of size α
is one with maximum power.

In terms of p0, p1, the power is∫
Rα

p1(x)dx =

∫
Rα

p0(x)r(x)dx

(
or
∑
Rα

p0(x)r(x)

)
= E{r(X)|X ∈ Rα;H0}

where

r(x) =
p1(x)

p0(x)
=
L(θ; H1)

L(θ; H0)
,

the likelihood ratio (LR) for H1 vs H0. We can prove that the power is maximized when

Rα has the form {x : r(x) ≥ kα} or {x : L(θ;H1)
L(θ;H0)

≥ kα}, i.e. when Rα is a LR critical region.
Thus we have the Neyman-Pearson lemma.

Theorem 3.1. (Neyman-Pearson lemma). For any size α, the LR critical region is the best
critical region for testing simple hypotheses H0 vs H1. (It is also better than any critical
region of size < α.)

A LR test is a test whose critical regions are LR critical regions for all α for which such
a size-α region exists (all α in the continuous case).

Examples

• Angles: If H0, H1 correspond to a Uniform distribution and a von Mises distribution
with parameter θ1, the LR is

r(x) =
p1(x)

p0(x)
= {2πI0(θ1)}−n e

θ1
∑
j cosxj

(2π)−n
,

which is an increasing function of t(x) =
∑

cosxj. So the LR critical regions have
the form {x :

∑
cosxj > tα}. For any α, tα is given by P(

∑
cosXj ≥ tα|H0) =

α. From §3.3
∑

cosXj is approximately N(0, 1
2
n) under H0, so tα is approximately(

1
2
n
)1/2

Φ−1(1− α). Note that the critical regions, and hence the test, do not depend
on the value of θ1.
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• E(λ) : X1, . . . , Xn are i.i.d. with d.f. 1−e−λy (y > 0). H0 is λ = λ0; H1 is λ = λ1 < λ0

r(x) =
p1(x)

p0(x)
=

(
λ1

λ0

)n
exp{(λ0 − λ1)

∑
xj},

which is increasing in
∑
xj. So the test is based on

∑
xj or 2λ0

∑
Xj, which is χ2

2n

under H0, and the critical regions are {x :
∑
xj >

1
2
λ−1

0 χ2
2n(α)}, where χ2

2n(α) is the
upper α point of χ2

2n. The power is

P(2λ0

∑
Xj > χ2

α|H1) = P
(

2λ1

∑
Xj >

λ1

λ0

χ2
2n(α)|H1

)
= Q2n

(
λ1

λ0

χ2
2n(α)

)
where Q2n is 1− distribution function for χ2

2n.

For comparison, we might base a test on x(1), which has distribution function 1−e−nλy;
size α critical regions are given by {x : x(1) > −(nλ0)−1 lnα}, and the power is αλ1/λ0 ,

which is < Q2n

(
λ1
λ0
χ2
α

)
for n > 1 and λ1 < λ0, and does not depend on n.

3.11 Designing the best test: simple null and composite alterna-
tive hypotheses

Suppose now there is a parametric family {p(x| θ) : θ ∈ Θ1} of alternative p.d.f.’s for X.
The power of a size-α critical region Rα generalizes to the size-α power function

pow(θ;α) = P(X ∈ Rα| θ)

=

∫
Rα

p(x| θ)dy

(
or
∑
Rα

p(x| θ)dy

)
(θ ∈ Θ1).

A size-α critical region Rα is then uniformly most powerful size α (UMP size α) if it
has maximum power uniformly over Θ1. A test is UMP if all its critical regions are UMP.
More formally

Definition 3.2. A uniformly most powerful or UMP test, φ0(X), of size α is a test t(x)
for which

(i) Eθφ0(X) ≤ α ∀ θ ∈ Θ0;

(ii) given any other test φ(·) for which Eθφ(X) ≤ α ∀ θ ∈ Θ0, we have Eθφ0(X) ≥
Eθφ(X) ∀ θ ∈ Θ1.

Such tests cannot be found in general, as this requires that the Neyman-Pearson test
should be the same for every pair of simple hypotheses. However, for one sided testing
problems, i.e., tests of the form H0 : θ ≤ θ0 against H1 : θ > θ0, there are a wide class of
parametric families for which UMP tests exist. These are distributions that have monotone
likelihood ratio or MLR.
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Definition 3.3. The family of densities {p(x|θ), θ ∈ Ωθ ⊆ R} with real scalar parameter θ
is said to be of monotone likelihood ratio if there exists a function s(x) such that the
likelihood ratio

p(x|θ2)

p(x|θ1)

is a non-decreasing function of s(x) whenever θ1 < θ2.

Note that the same result applies for a non-increasing test statistic, by replacing t(x) by
−t(x).

Theorem 3.2. Suppose X has a distribution from a family that is monotone likelihood ratio
with respect to some continuous test statistic s(X) and we wish to test H0 : θ = θ0 against
H1 : θ > θ0, then a UMP test exists with critical region of the form s ≥ sα.

Proof. For testing θ = θ0 against θ = θ1 for any specific θ1 ∈ Θ1, the Neyman-Pearson
lemma tells us that the most powerful critical region is given by the likelihood ratio critical
region. The LR is a non-decreasing function of s(y) for any θ1 > θ0, and so the critical
region is of the form s ≥ sα. sα is determined by the size of the test and depends only on
θ0. Hence, this critical region is identical for all θ1 ≥ θ0 and this test is UMP.

Corollary 3.1. If X1, . . . , Xn are i.i.d with p.d.f. of the form

p(x| θ) = exp{a(x)b(θ) + c(θ) + d(x)}

with θ a scalar parameter and b(θ) strictly increasing, then for testing the null hypothesis
that θ = θ0 against θ > θ0 the LR test has critical regions corresponding to large values of
s =

∑
a(xj) and is UMP.

Proof For any θ1 > θ0, the LR is

pX(x| θ1)

pX(x| θ0)
= exp[{b(θ1)− b(θ0)}s+ n{c(θ1)− c(θ0)}].

Since b(θ1) > b(θ0), this is monotone likelihood ratio and so the conditions of Theorem 3.2
are satisfied. This applies to all one-parameter exponential families, e.g. Normal, Binomial,
Poisson. There are similar results for θ < θ0, when b(θ) is a decreasing function.

Example.

• Angles : take H0 to be that angles X1, . . . , Xn are i.i.d. and Uniform on [0, 2π).

A set of alternatives representing a type of symmetrical clustering about y = 0 has the
Xj i.i.d. with von Mises p.d.f.

exp(θ cosx)

2πI0(θ)
(0 ≤ x < 2π; θ > 0).

So we test the hypothesis H0 : θ = 0 against the alternative θ > 0.
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3.12 Designing the best test: composite null and alternative hy-
potheses

3.12.1 One-sided tests*

Previously we considered tests of hypotheses where the null hypothesis was simple. Testing
composite hypotheses is more complex in general. However, the above result for monotone
likelihood ratio distributions also applies to one-sided tests of the form H0 : θ ≤ θ0 against
H1 : θ > θ0.

Theorem 3.3. Suppose X has a distribution from a family that is monotone likelihood ratio
with respect to some continuous test statistic s(X) and we wish to test H0 : θ ≤ θ0 against
H1 : θ > θ0, then

(a) The test

φ0(x) =

{
1 if s(x) > s0,
0 if s(x) ≤ s0,

(56)

is UMP among all tests of size ≤ Eθ0 {φ0(X)}.

(b) Given some 0 < α ≤ 1, there exists an s0 such that the tests in (a) has size exactly equal
to α.

Proof. 1. From Theorem 3.2, φ0 is UMP for testing H0 : θ = θ0 against H1 : θ > θ0.

2. Eθ{φ0(x)} is a non-decreasing function of θ. If we have θ2 < θ1 and Eθ2{φ0(x)} = β,
then the trivial test φ(x) = β has Eθ1{φ(x)} = β. The test φ0 is UMP for testing θ2

against θ1 and so it must be at least as good as φ, i.e., Eθ1{φ0(x)} ≥ β. Hence, if we
construct the test with Eθ0{φ0(x)} = α, then Eθ{φ0(x)} ≤ α for all θ ≤ θ0, so φ0 is
also of size α under the larger hypothesis H0 : θ ≤ θ0.

3. For any other test φ that is of size α under H0, we have Eθ0{φ(x)} ≤ α and by the
Neyman-Pearson lemma Eθ1{φ(x)} ≤ Eθ1{φ0(x)} for any θ1 > θ0. This shows that this
test is UMP among all tests of its size.

4. If α is specified we must show that there exists a s0 such that Pθ0{s(X) > s0} = α,
but this follows from the assumption that s(X) is continuous.

3.12.2 Two-sided tests

In more general situations we will be interested in testing hypotheses of the form H0 : θ ∈ Θ0,
where Θ0 is either an interval [θ1, θ2] for θ1 < θ2 or a single point Θ0 = {θ0}, against the
generic alternative H1 : θ ∈ Θ1, with Θ1 = R/Θ0. For a family with monotone likelihood
ratio with respect to a statistic s(X), we might expect a good test to have a test function of
the form

φ(x) =


1 if s(x) > s2 or s(x) < s1,
γ(x) if s(x) = s2 or s(x) = s1,
0 if s1 < s(x) < s2.

Such a test is called a two-sided test. For such two-sided tests, we cannot usually find a
UMP test. However, under certain circumstances it is possible to find a uniformly most
powerful unbiased (UMPU) test.
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Definition 3.4. A test φ(y) of H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 is called unbiased of size
α if

sup
θ∈Θ0

Eθ {φ(Y)} ≤ α

and
Eθ {φ(Y)} ≥ α for all θ ∈ Θ1.

In other words, an unbiased test is one which has higher probability of rejecting H0 when
it is false than when it is true. Note that if the power function is a continuous function of
θ then an unbiased test of size α must have size equal to α on the boundary of the critical
region (since the size is less than or equal to α within the critical region and greater than or
equal to α outside).

Definition 3.5. A test which is uniformly most powerful among the set of all unbiased tests
is called uniformly most powerful unbiased.

For a scalar exponential family of the form given in Corollary 3.1 the following theorem
holds

Theorem 3.4. If X1, . . . , Xn are i.i.d with p.d.f. of the form

p(x| θ) = exp{a(x)b(θ) + c(θ) + d(x)}

with θ a scalar parameter and b(θ) strictly increasing, then there exists a unique UMPU
test of size α, φ′, for testing the hypothesis H0 : θ ∈ [θ1, θ2], against the generic alternative
H1 : θ ∈ R− [θ1, θ2], of the form

φ′(x) =


1 if s(x) > s2 or s(x) < s1,
γj if s(x) = sj,
0 if s1 < s(x) < s2.

(57)

where S =
∑
a(xj), for which

Eθjφ′(X) = Eθjφ(X) = α, j = 1, 2.

The boundaries of the critical region, s1, s2, and the rejection probabilities on the boundaries,
γ1, γ2, are determined from the conditions Eθjφ′(X) = α.

Example. Suppose a sample Y is drawn from an Exp(λ) distribution, so that f(y|λ) =
λ exp(−λy). Construct a uniformly most powerful unbiased test of size α = 0.05 of the
hypothesis H0 : λ ∈ [1, 2] against the generic alternative λ ∈ [0, 1) ∪ (2,∞).

For a single sample from the exponential distribution, the sufficient statistic is the ob-
served value, y. Using the previous result, the UMPU test is of the form (57). The probability
that s = si is zero for any single value si and therefore the γi’s do not need to be determined.
The boundaries of the critical region can be found from the constraints

α = 0.05 = 1− exp(−s1) + exp(−s2) = 1− exp(−2s1) + exp(−2s2),

from which we find s1 = 0.02532 and s2 = 3.6889. The corresponding power function η(λ)
is shown in Figure 2. This shows that the test is unbiased as the probability of rejecting H0

is less than or equal to the size α within the region defined by H0, it is equal to α on the
boundary, and greater than α everywhere outside that region.
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Figure 2: Power of the UMPU test of λ ∈ [1, 2] against a generic alternative for an exponential
distribution, as a function of λ, i.e., Pλ(reject H0). The horizontal line indicates the size of
the test, α = 0.05.

3.12.3 Testing a point null hypothesis*

A test of the null hypothesis H0 : θ = θ0 against H1 : θ 6= θ0 can be considered as the limit
of the preceding two-sided test when θ2 − θ1 → 0. Therefore, as a corollary to the previous
result, there must exist a unique UMPU test, φ′, of this hypothesis of the form (57) for which

Eθ0{φ′(X)} = α,
d

dθ
Eθ{φ′(X)}|θ=θ0 = 0. (58)

Differentiability of the power function for any test function is ensured from the assumption
that the distribution is in the exponential family.

Example. Returning to the example of the preceding section of a single sample from an
Exp(λ) distribution, if we instead want to test the hypothesis that λ = 1 then we proceed
as before, but the constraints on the boundary of the rejection region are now

α = 0.05 = 1− exp(−t1) + exp(−t2),

0 = t1 exp(−t1)− t2 exp(−t2),

which can be solved numerically to give t1 = 0.0423633, t2 = 4.76517. The power function is
shown in Figure 3. We see that it reaches a minimum of α = 0.05 at θ = θ0 so it is unbiased
and of size α as desired.

3.13 Designing the best test: similar Tests*

So far we have focussed on tests of one-parameter distributions. However, often the dis-
tribution will depend on more than one parameter. In that case we are interested in tests
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Figure 3: Power of the UMPU test of λ = 1 against a generic alternative for an exponential
distribution, as a function of λ, i.e., Pλ(reject H0). The horizontal line indicates the size of
the test, α = 0.05.

that perform as well as possible in inferring the value of one parameter of the distribution,
irrespective of the value of the other parameters of the distribution. This gives rise to the
notion of a similar test.

Definition 3.6. Suppose θ = (ψ, λ) and the parameter space is of the form Ωθ = Ωψ × Ωλ.
Suppose we wish to test the null hypothesis H0 : ψ = ψ0 against the alternative H1 : ψ 6= ψ0,
with λ treated as a nuisance parameter. Suppose φ(x), x ∈ X is a test of size α for which

Eψ0,λ {φ(x)} = α for all λ ∈ Ωλ.

Then φ is called a similar test of size α.

This definition can be extended to composite null hypotheses. If the null hypothesis
is of the form θ ∈ Θ0, where Θ0 is a subset of Ωθ, then a similar test is one for which
Eθ {φ(x)} = α on the boundary of Θ0.

If a test is uniformly most powerful among all similar tests then it is called UMP similar.
There is close connection to UMPU tests. If the power function of a test is continuous then
we saw earlier that any unbiased test of size α must have size exactly equal to α on the
boundary, i.e., it must be similar. In such cases, if we can find a UMP similar test and it
turns out to also be unbiased, then it is necessarily UMPU.

Moreover, in many cases it is possible to demonstrate that a test which is UMP among
all tests based on the conditional distribution of a statistic S given the value of an ancillary
statistic A, this test is UMP among all similar tests. In particular, this applies if A is a
complete sufficient statistic for the variables λ.
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One common situation in which this occurs is for multi-parameter exponential families,
for which the likelihood can be written

p(x|θ) = exp

{
p∑
i=1

Ai(x)Bi(θ) + C(θ) +D(x)

}
.

Consider a test of the form H0 : B1(θ) ≤ θ∗1 against H1 : B1(θ) > θ∗1. If we take
s(x) =

∑
j A1(xj) and A = (

∑
j A2(xj), . . . ,

∑
j Ap(xj)), then the conditional distribution of

S given A is also of the exponential form and doesn’t depend on B2(θ), . . . , Bp(θ), so A is
both sufficient and complete for B2(θ), . . . , Bp(θ). The Conditionality Principle suggests we
should make inference about B1(θ) based on the conditional distribution of S given A. Tests
constructed in this way are UMPU (Ferguson 1967). The optimal one-sided test is then of the
following form. Based on observations s1 =

∑
j A1(xj), s2 =

∑
j A2(xj), . . . , sp =

∑
j Ap(xj),

we reject H0 if and only if s1 > s∗1, where s∗1 is calculated from

PB1(θ)=θ∗1
{S1 > s∗1|S2 = s2, . . . , Sp = sp} = α.

It can be shown this is a UMPU test of size α.
Similarly, to construct a two-sided test of H0 : θ∗1 ≤ B1(θ) ≤ θ∗∗1 against B1(θ) < θ∗1 or

B1(θ) > θ∗∗1 , we first define the conditional power function

wθ1(φ|s2, . . . , sp) = Eθ1 {φ(S1)|S2 = s2, . . . , Sp = sp} .

Then we can construct a two-sided conditional test of the form

φ′(s1) =

{
1 if ss < s∗1 or s1 > s∗∗1 ,
0 if s∗1 ≤ s1 ≤ s∗∗1 ,

where s∗1 and s∗∗1 are chosen such that

wθ1(φ
′|s2, . . . , sp) = α when B(θ1) = θ∗1 or B(θ1) = θ∗∗1 .

It can be shown that these tests are also UMPU of size α. If the test is of a simple hypothesis
B(θ1) = θ∗1 against the generic alternative B(θ1) 6= θ∗1 then the test is of the same form but
the conditions are that the power function is equal to α and its derivative with respect to θ
is equal to 0, as in Eq. (58).

3.14 Generalized likelihood ratio tests

In the previous sections we focussed on finding the “best” tests by one metric or another.
However, as we have seen this is not always easy and the resulting test statistics are not
always straightforward to evaluate. Under many circumstances, in the limit n → ∞, the
likelihood ratio follows a χ2 distribution and so this can be used to construct a test that is
valid asymptotically.

In particular, suppose we are testing H0 : ~θ ∈ Θ0 versus H1 : ~θ ∈ Θ1. We define the
likelihood ratio

LX(H0, H1) =
sup~θ∈Θ1

p(x|θ)
sup~θ∈Θ0

p(x|θ)
and denote by p = |Θ1 − Θ0| the difference in the numbers of degrees of freedom in the
unknown parameters between the two hypotheses. Then as n→∞

2 logLX(H0, H1) ∼ χ2
p
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under H0 and tends to be larger under H1. Therefore critical regions of the form 2 logLX >
χ2
p(α) give tests of approximately size α.

The interpretation of p is the number of constraints that have been placed to reduce the,
typically more general, alternative hypothesis, to the more restrictive null hypothesis. For
example, the null hypothesis might be specified by fixing the values of p of the parameters,
or by imposing p linear constraints on the parameters, or by writing the k parameters of Θ1

as functions of an alternative k − p dimensional parameter space.
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4 Examples of frequentist statistics in gravitational wave

astronomy

In this section we will describe some of the applications of frequentist statistical methods
to gravitational wave detection. Fundamental to frequentist statistics is the likelihood. For
gravitational wave detectors, we assume that the output of the detector, s(t), is a linear

combination of a signal, h(t|~λ), determined by a finite set of (unknown) parameters, ~λ, and
instrumental noise, n(t). We assume in addition that the noise is Gaussian with a (usually
known) power spectral density Sh(f)

s(t) = n(t) + h(t|~λ), 〈ñ∗(f)ñ(f ′)〉 = Sh(f)δ(f − f ′). (59)

The signal is deterministic, but the noise is a random process. The likelihood, for parameters
~λ, is therefore the probability that the observed noise realisation would take the value n(t) =

s(t)− h(t|~λ), which can be seen to be

L(s|~λ) = p(n(t) = s(t)− h(t|~λ)) ∝ exp

[
−1

2
(s− h(~λ)|s− h(~λ))

]
(60)

where the noise weighted overlap is

(a|b) =

∫ ∞
−∞

ã∗(f)b̃(f) + ã(f)b̃∗(f)

Sh(f)
df.

These expressions will be justified more carefully in Chapter 8.

4.1 The Fisher Matrix

We introduced the Fisher Matrix in the discussion of the Cramer-Rao bound on the variance
of an estimator, which, for a multivariate unbiased estimator, λ̂, is given by

cov(λ̂i, λ̂j) ≥ [Γλ]
−1
ij

where

(Γλ)ij = E
[
∂l

∂λi

∂l

∂λj

]
.

In the above l denotes the log-likelihood. For the gravitational wave log-likelihood in Eq. (60),
the derivative is

∂l

∂λi
=

(
∂h

∂λi

∣∣∣∣∣s− h(~λ)

)
=

(
∂h

∂λi

∣∣∣∣∣n
)
.

It therefore follows from Eq. (59) (see Chapter 8 for an explicit calculation), that

(Γλ)ij = E
[
∂l

∂λi

∂l

∂λj

]
=

〈(
∂h

∂λi

∣∣∣∣∣n
)(

∂h

∂λi

∣∣∣∣∣n
)〉

=

(
∂h

∂λi

∣∣∣∣∣ ∂h∂λj
)
.

The Fisher Matrix gives a lower bound on the variance of any unbiased estimator of the
parameters of the signal, and hence it provides a guide to how accurately the parameters can
be measured. We know that the maximum likelihood estimator is asymptotically efficient,
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i.e., it achieves this Fisher Matrix bound, which is why it might be expected to provide a
good guide to parameter measurement precision. However, asymptotic efficiency refers to
making many repeated measurements of the same parameter, which we do not typically do
in gravitational wave observations. But it can be seen that the Fisher Matrix provides a
good guide to measurement precision even for a single observation, as follows. We suppose
that the true parameters of the signal are given by ~λ0, and expand to leading order about
those parameters

~λ = ~λ0 + ∆~λ, h(t|~λ) = h(t|~λ) + ∂ih(t|~λ)∆λi

where ∂i denotes the derivative with respect to λi and the last term employs Einstein sum-
mation convention. This approximation is known as the linear signal approximation.
The likelihood can then be expanded as

L(s|~λ) ∝ exp

[
−1

2
(n− ∂ih(t|~λ)∆λi|n− ∂jh(t|~λ)∆λj)

]
= exp

{
−1

2

[
(n|n)− 2(n|∂ih(t|~λ))∆λi + (∂ih(t|~λ)|∂jh(t|~λ))∆λi∆λj

]}
= exp

[
−1

2
(n|n)

]
exp

[
−1

2

(
∆λi − (Γ−1)ik(n|∂kh(t|~λ))

)
Γij

(
∆λj − (Γ−1)jl(n|∂lh(t|~λ))

)]
× exp

[
−1

2
(n|∂ih(t|~λ))(Γ−1)ij(n|∂jh(t|~λ))

]
. (61)

The latter term is sub-dominant since it is O(1) compare to the middle term which is of
order of the signal amplitude, or SNR. The middle term is a Gaussian, centred at ∆λi =
(Γ−1)ik(n|∂kh(t|~λ)), and with covariance matrix given by the Fisher Matrix. The latter
therefore provides an estimate of the width of the likelihood distribution and hence can be
used as a guide to the uncertainty. In addition, the maximum likelihood estimator

∆̂λ
i

= (Γ−1)ik(n|∂kh(t|~λ))

has mean and variance

E
(

∆̂λ
i
)

= 0, cov
(

∆̂λ
i
, ∆̂λ

j
)

= Γ−1
ij ,

which again confirms the interpretation of the Fisher Matrix as the uncertainty in the pa-
rameter estimate. The fractional corrections to the Fisher Matrix estimate scale like the
inverse of the signal-to-noise ratio and therefore the Fisher Matrix is a good approximation
in the high signal-to-noise ratio limit.

The Fisher Matrix has been widely used in a gravitational wave context to assess the
measurability of parameters using observations with present or future detectors. While the
Fisher Matrix is only an approximation, it can be directly calculated by evaluating a small
number of waveforms, rather than requiring samples to be obtained all over the waveform
parameter space, and so it is much cheaper computationally. This makes it a good tool for
Monte Carlo simulations over parameter space, to survey parameter estimation accuracies
over a wide parameter range.

4.2 Matched filtering

The notion of filtering will be discussed in more detail in Chapter 8, but the basic idea is
to construct a statistic based on the output of a filter, which is convolution of the observed
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data with the specified filter template.When the form of the signal is known, the filter with
the highest signal to noise ratio, called the optimal filter, has a frequency-domain kernel
K̃(f) ∝ h̃(f)/Sh(f). The use of the output of this filter as a test statistic for a search
can also be motivated by the frequentist concepts that we encountered in previous chapters.
Suppose that we write h(λ) = Aĥ(λ), where (ĥ(λ)|ĥ(λ)) = 1, to separate out the amplitude
of the gravitational wave source from the other parameters. The log-likelihood can be written

l(λ) = −1

2
(s− Aĥ(λ)|s− Aĥ(λ)) = −1

2

[
(s|s)− 2A(s|ĥ) + A2

]
= −1

2

[
(s|s) + (A− (s|ĥ))2 − (s|ĥ)2

]
. (62)

For a given λ, this is maximized by the choice A = (s|ĥ), for which the log-likelihood
∝ (s|ĥ)2−(s|s). The maximum likelihood estimator for parameters other than the amplitude
is thus given by the maximum of the optimal filter output over the parameter space. So,
optimal filtering is just maximum likelihood estimation. To do this in practice, the optimal
filter must be evaluated over the whole parameter space. In the analysis of gravitational
wave data, from LIGO in particular, this is achieved using a template bank, which is a set
of templates that cover the whole parameter space. The overlap of each template with the
detector data is evaluated, and the maximum of those template overlaps is used as a test
statistic to identify whether or not there is a signal in the data.

The question that we want to ask is “Is there a gravitational wave signal in the data?”.
Assuming that the parameters λ are fixed, this can formulated as a hypothesis test on the
signal amplitude

H0 : A = 0, vs. H1 : A > 0.

From the Neyman-Pearson lemma the optimal statistic for testing the simple hypothesis
A = 0 versus A = A1 is the likelihood ratio, which is

exp

[
A1(s|ĥ(λ))− 1

2
A2

1

]
.

This is large for large values of the optimal filter (s|ĥ(λ)) and so we deduce that the optimal
filter is also the most powerful detection statistic. As the detection statistic does not depend
on A1, this test is uniformly most powerful for the composite hypothesis A > 0. In the more
usual case that λ is unknown, although the maximum of the optimal filter statistic is still the
maximum likelihood estimator, this is no longer a uniformly most powerful test, although it
remains quite close to being so.

LIGO matched filtering searches typically use a large number of templates, distributed
throughout the parameter space in a template bank. The matched filter output is evaluated
for all of these templates, and the maximum filter output over the template bank is used as
a detection statistic. Template banks are typically characterised by their minimal match,
MM. This is defined as the minimum over all possible signals of the maximum overlap of
that signal with one of the templates in the bank

min
~λ

[
max

htemp,i:i=1,...,N
(h(~λ)|htemp,i)

]
& MM

where {htemp,i : i = 1, . . . , N} are the N templates in the template bank. The minimal match
is the worst possible detection statistic that a randomly chosen signal could have. Setting
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this minimal match to some value close to 1 ensures that very few signals will be missed. A
typical value of the minimal match used in practice would be 0.97. For a uniform distribution
of sources in a Euclidean Universe, the fraction of sources that would be missed is 1−0.973 =
0.087.

Template banks can be constructed analytically using the Fisher Matrix as a metric. This

follows from expanding the overlap of two normalised templates, ĥ(~λ) = h(~λ)/

√
(h(~λ)|h(~λ)),

(ĥ(~λ)|ĥ(~λ+∆~λ)) = (ĥ(~λ)|ĥ(~λ))+

(
ĥ(~λ)

∣∣∣∣∣ ∂ĥ∂λi (~λ)

)
∆λi+

1

2

(
ĥ(~λ)

∣∣∣∣∣ ∂2ĥ

∂λi∂λj
(~λ)

)
∆λi∆λj+· · · .

The first term is 1 because of the normalisation. The second term vanishes since

(ĥ(~λ)|ĥ(~λ)) = 1 ⇒ ∂

∂λi
(ĥ(~λ)|ĥ(~λ)) = 0 ⇒

(
ĥ(~λ)

∣∣∣∣∣ ∂ĥ∂λi (~λ)

)
= 0.

The third term can be simplified using

∂

∂λj

(
ĥ(~λ)

∣∣∣∣∣ ∂ĥ∂λi (~λ)

)
= 0 ⇒

(
∂ĥ

∂λi
(~λ)

∣∣∣∣∣ ∂ĥ∂λj (~λ)

)
+

(
ĥ(~λ)

∣∣∣∣∣ ∂2ĥ

∂λi∂λj
(~λ)

)
= 0

⇒

(
∂ĥ

∂λi
(~λ)

∣∣∣∣∣ ∂ĥ∂λj (~λ)

)
= −

(
ĥ(~λ)

∣∣∣∣∣ ∂2ĥ

∂λi∂λj
(~λ)

)
. (63)

We deduce

(ĥ(~λ)|ĥ(~λ+ ∆~λ)) = 1− 1

2
Γij∆λ

i∆λj.

The Fisher Matrix (of normalised templates) thus provides a metric on parameter space,
which can be used to place templates. This is only practical in low numbers of dimensions. In
higher numbers of dimensions, it is easier to use stochastic template banks. A stochastic
bank is constructed as follows

1. At step 1, choose the first template, ĥ(λ1), randomly from parameter space. Add it to
the template bank, T .

2. At step i ≥ 2, set the counter to 1 and then repeat the following steps:

(a) Draw a random set of parameter values, ~λi, and evaluate the match, M , with the
current template bank

M =

[
max

htemp∈T
(h(~λi)|htemp)

]
.

(b) If M < MM , add h(~λi) to the template bank and advance to step i+1. Otherwise,
increment the counter. If the counter has reached Nmax, stop. Otherwise return
to step (a).
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4.3 LIGO searches

LIGO employs two different matched filtering algorithms to search for signals, pycbc and
gstlal. They differ in various details, including how the template overlaps are computed. We
will not discuss these in detail here, but refer the interested reader to relevant publications.
For gstlal these are

• Cannon, K., Cariou, R., Chapman, A., et al. (2012), Astrophys. J. 748, 136, doi:
10.1088/0004-637X/748/2/136.

• Privitera, S., Mohapatra, S. R. P., Ajith, P., et al. (2014), Phys. Rev. D 89, 024003,
doi: 10.1103/PhysRevD.89.024003

• Messick, C., Blackburn, K., Brady, P., et al. (2017), Phys. Rev. D 95, 042001, doi:
10.1103/PhysRevD.95.042001

• Sachdev, S., Caudill, S., Fong, H., et al. (2019), arXiv:1901.08580

• Hanna, C., Caudill, S., Messick, C., et al. (2019), arXiv:1901.02227

For pycbc the relevant references are

• Nitz, A., Harry, I., Brown, D., et al. (2019), gwastro/pycbc: PyCBC Release v1.15.2,
doi: 10.5281/zenodo.3596447

• Nitz, A. H., Dal Canton, T., Davis, D., & Reyes, S. (2018), Phys. Rev. D 98, 024050,
doi: 10.1103/PhysRevD.98.024050

• Usman, S. A., Nitz, A. H., Harry, I. W., et al. (2016), Class. Quantum Grav. 33,
215004, doi: 10.1088/0264-9381/33/21/215004

Both searches adopt a traditional frequentist framework, in that the output of the pipeline
is used as a detection statistic. If the detection statistic exceeds a threshold then the data
is flagged as interesting, i.e., potentially containing a signal. The threshold is determined
based on the behaviour of the search pipeline in the absence of any signals in the data. This
background distribution is estimated using time slides. Both searches rely on consistency
between triggers in two or more detectors. Any astrophysical gravitational wave signal must
pass through both detectors within an interval of 10ms. If the data of one detector is time
shifted relative to the other by more than this amount, then any coincident triggers in the
two instruments must be due to instrumental noise only. By doing many different time
shifts in this way, the background distribution can be estimated for much longer effective
observation times.

In hypothesis testing, we discussed the notion of a significance or p-value. This makes
sense if the size of the data set is fixed, but gravitational wave detectors are continuously
taking data. Therefore it makes sense to quantify significance instead by a false alarm rate
or FAR, which is the frequency at which triggers as extreme as the one observed, or more
extreme, occur in the data. LIGO quotes FARs for all events that are distributed publicly.

We will now give an overview of a few techniques that are used in LIGO searches to
improve their speed and efficiency.
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4.3.1 Waveform consistency

The assumptions that lead to the optimal filter assume that the noise is stationary. This
is approximately true for gravitational wave detectors, but they are also observed to have
large glitches quite often. While the glitches do not match any of the templates well, there
is often sufficient power in the glitch that they can trigger the detection statistic to exceed
the threshold. To mitigate for this problem, LIGO searches use waveform consistency
checks. These verify that after subtracting the best-fit template signal from the data, the
resulting time series is consistent with being stationary Gaussian noise with the estimated
PSD. If the template ĥ coincides with the true signal, the quantity

χ2 =
N∑
k=1

|ŝk − ĥk|2

Sh(fk)

is the sum of squares of N(0, 1) distributed random variables, and hence follows a chi-squared
distribution with N degrees of freedom. The mean of a χ2

N random variable is N , so χ2/N
should be expected to be close to 1 if the template is a good match to the data, and much
bigger otherwise. LIGO uses something called effective SNR as a detection statistic. This is
defined as

ρ̂ =
ρ

(1 + (χ2/N)3)
1
6

.

For real signals, this is close to the true SNR, while for glitches it is much smaller. The
effective SNR is used as the detection statistic by pycbc.

4.3.2 Marginalisation over phase and time

A template bank requires templates in all parameters, so it is useful to reduce the dimen-
sionality of the parameter space whenever possible. This can be done straightforwardly for
the initial phase and time of coalescence. For a monochromatic signal

h(t|A, f0, tc, φ0) = A cos(2πf0(t−tc)+φ0) = A cos(2πf0(t−tc)) cosφ0−A sin(2πf0(t−tc) sinφ0

the matched filter overlap is

(s|h) = A cosφ0Oc−A sinφ0Os, where Oc = (s| cos(2πf0(t−tc))), Os = (s| sin(2πf0(t−tc))).

Differentiating with respect to φ0 and equating it to zero, we find that the value of φ0 that
maximises the overlap is

tanφ0 = −Os

Oc

⇒ max
φ0

(s|h)2 = A2(O2
c +O2

s).

If this is used instead of the standard overlap, then the template bank automatically max-
imises over phase and this parameter direction does not need to be covered by templates.

To maximize over the unknown coalescence time we use

h̃(f |A, f0, tc, φ0) = h̃(f |A, f0, 0, φ0) exp(−2πiftc)

and observe that

(s|h(t|A, f0, tc, φ0)) = 2<
∫ ∞
−∞

s̃∗(f)h̃(f |A, f0, 0, φ0)

Sh(f)
exp(−2πiftc)df.
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This is just the inverse Fourier transform of

s̃∗(f)h̃(f |A, f0, 0, φ0)

Sh(f)
.

Inverse Fourier transforms can be computed cheaply (in n log n time) using the fast Fourier
transform. Therefore, the time of coalescence can be efficiently maximized over by computing
the quantity above, taking its inverse fast Fourier transform, and then finding the maximum
of the components of the resulting vector.

4.3.3 The F-statistic

The F -statistic is an extension of the above ideas to more of the extrinsic parameters of the
signal. It is not used so much for LIGO, but has been used extensively in LISA data analysis
work (see for example Cornish & Porter (2007), Phys. Rev. D75, 021301; Class. Quantum
Grav. 24, 5729). The idea is to write the signal as a sum of modes, such that the coefficients
depend only on a (subset of) the extrinsic parameters, and then analytically maximise over
those coefficients. For SMBH binaries in LISA the decomposition takes the form

h(t) =
4∑
i=1

ai(ι, ψ,DL, φc)A
i(t|Mc, µ, tc, θ, φ)

where

a1 = Λ[(1 + cos2 ι) cos 2ψ cosφc − 2 cos ι sin 2ψ sinφc]

a2 = −Λ[(1 + cos2 ι) sin 2ψ cosφc + 2 cos ι cos 2ψ sinφc]

a3 = Λ[(1 + cos2 ι) cos 2ψ sinφc + 2 cos ι sin 2ψ cosφc]

a4 = −Λ[(1 + cos2 ι) sin 2ψ sinφc − 2 cos ι cos 2ψ cosφc]

A1 = Mηx(t)D+ cos(Φ)

A2 = Mηx(t)D× cos(Φ)

A3 = Mηx(t)D+ sin(Φ)

A4 = Mηx(t)D× sin(Φ). (64)

Here the waveform parameters are inclination ι, polarization angle, ψ, luminosity distance,
DL, phase at coalescence, φc, chirp mass, Mc, reduced mass ratio, µ, time of coalescence, tc,
colatitude, θ, and azimuth, φ. We denote the waveform phase by Φ(t) and x = (GMω/c3)2/3,
where ω is the orbital frequency and M = m1 + m2 is the total mass. The quantities D+

and Dx are the two components of LISA’s time-dependent response function.
Writing N i = (s|Ai), the matched filter overlap is

(s|h) = ajN
j

and we want to maximise this subject to the constraint that the waveform is normalised
which becomes

aiM
ijaj = 1,′ where M ij = (Ai|Aj).

This is a standard optimisation problem with solution

ai = (M−1)ijN
j = MijN

j.
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The maximized value of the log-likelihood is the F-staistic

F =
1

2
MijN

iN j.

This can be used to automatically maximise over extrinsic parameters in a search, reducing
the dimensionality of the parameter space to just that of the intrinsic parameters. Note
that in the above we have taken the coefficients, ai, to be independent of one another and
unconstrained, while in practice they are correlated and take a potentially limited range
of values because they all depend on the same set of four extrinsic parameters. Thus, we
are finding the maximum over a space that is somewhat larger than the true space, and
contains some unphysical values. If there is a signal in the data, then the maximization
must nonetheless still give the right extrinsic parameter values (in the absence of noise).

4.3.4 Power spectral density estimation

The likelihood contains the spectral density of noise in the detector, which is usually not
known precisely. LIGO searches (and parameter estimation codes) need to use a PSD that
has been estimated from the data. This is accomplished by considering a number of other
sections of data, distributed either side of the section of data that is of interested because it
is believed to contain a signal. The power spectrum (i.e., the norm squared of the Fourier
transform) is computed for each of the empty segments, σ2

i (f), and then these can be com-
bined to give an estimate of the PSD in the segment of interest. The averaging can be done
by taking the mean

σ2
0(f) =

1

2N

N∑
k=1

(s2
k + s2

−k)

but in LIGO analyses it is more usual to use the median. The median is less susceptible to
outliers in the data arising from non-stationary features in the noise.

4.4 Unmodelled searches

For burst sources matched filtering cannot be used, as it is not possible to build templates of
potential signals. LIGO uses a number of different searches for unmodelled sources. Again,
we won’t describe these in detail, but refer to papers that give full details on the algorithms:

• Coherent Wave Burst (CWB):

– S. Klimenko et al. (2016), Phys. Rev. D 93, 042004, arXiv:1511.05999.

• MBTA:

– Adams, T., Buskulic, D., Germain, V., et al. (2016), Class. Quantum Grav. 33,
175012, doi: 10.1088/0264-9381/33/17/175012

• SPIIR:

– Luan, J., Hooper, S., Wen, L., & Chen, Y. (2012), Phys. Rev. D 85, 102002, doi:
10.1103/PhysRevD.85.102002

– Hooper, S., Chung, S. K., Luan, J., et al. (2012), Phys. Rev. D 86, 024012, doi:
10.1103/PhysRevD.86.024012
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Figure 4: Example of a time-frequency spectrogram. Reproduced from Wen & Gair (2005).

– Chu, Q. (2017), PhD thesis, University of Western Australia

– Guo, X., Chu, Q., Chung, S. K., et al. 2018, Co. Phys. C 231, 62, doi:
10.1016/j.cpc.2018.05.002

• X-pipeline:

– Sutton, P. J., Jones, G., Chatterji, S., et al. (2010), N J Phys. 12, 053034

– Was, M., Sutton, P. J., Jones, G., & Leonor, I. (2012), Phys. Rev. D 86, 022003

All of these algorithms search for clusters in time-frequency spectrograms of the data.
The full data stream is divided into (usually overlapping) time segments, windowed and
Fourier-transformed to obtain a frequency-domain representation of that chunk of data.
The norm of these spectra is computed and they are then arranged next to one another in
a grid. An example of a spectrogram is shown in Figure 4. Real astrophysical sources tend
to produce coherent groups of bright pixels, or tracks, in these spectrograms. The patterns
will be similar in different detectors in the network. The various time-frequency algorithms
typically first evaluate bright pixels in the spectrograms, by thresholding on the power or
some derived quantities. Then they cluster the pixels into groups, apply consistency criteria
for the location of groups in two or more detectors in the network, and hence identify triggers
of interest.

Time-frequency methods have also been applied to analysis of simulated LISA data, in
the context of the LISA Mock Data Challenges (e.g., Gair, J.R. and Jones, G.J. (2007), Class.
Quantum Grav. 24, 1145; Gair, J.R., Mandel, I. and Wen, L. (2008), Class. Quantum Grav.
25, 184031; Gair, J.R. and Wen, L. (2005), Class. Quantum Grav. 22, S1359; Wen, L. and
Gair, J.R. (2005), Detecting extreme mass ratio inspirals with LISA using time-frequency
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methods, Class. Quantum Grav. 22, S445.). While these algorithms were successful in
simplified situations (i.e., with many fewer sources in the data than we would expect to see
in practice) they are unlikely to be very effective when applied to real LISA data, due to the
very large number of expected sources that will be overlapping in both time and frequency.

4.5 Semi-coherent searches

For continuous gravitational wave signals, e.g., rotating neutron stars in LIGO data, or
very long-lived inspiral signals, e.g., extreme-mass-ratio inspirals in LISA data, matched
filtering is possible in the sense that templates of the signals can be generated. however, it
is computationally impossible, because the number of templates required to ensure a dense
coverage of parameter space is extremely large. In these cases, it is possible to use semi-
coherent search methods. These involve dividing the data stream into shorter segments,
analysing each of those segments with matched filtering, and them adding up the power
in the matched filter outputs along trajectories through the segments that correspond to
physical inspirals. This approach is summarised in Figure 5. The semi-coherent approach is
more computationally efficient, because the number of templates required to densely cover
the parameter space for shorter observation times is much smaller.

A discussion of the use of a semi-coherent technique for detection of extreme-mass-ratio
inspirals may be found in Gair, J.R. et al. (2004), Class. Quantum Grav. 21, S1595. In that
context, the coherent phase used 2 week segments of data, out of 1 year long LISA data sets.
The coherent phase also employs the F -statistic described above to automatically maximize
over some of the extrinsic parameters.The impact of using the semi-coherent method rather
than fully coherent matched filtering is to increase the estimated matched-filtering signal-
to-noise ratio threshold for detection from ρ = 14 to ρ = 30.

In the context of the ground-based detectors, similar methods are used to search for
continuous gravitational wave signals from rotating pulsars. The most recent LIGO results
from the O2 science run are described in this paper

• Abbott, B.P. et al. (2019), All-sky search for continuous gravitational waves from
isolated neutron stars using Advanced LIGO O2 data, Phys. Rev. D 100, 024004.

LIGO uses two primary search methods. The time-domain F-statistic uses the same
technique as the EMRI search described above. In fact, the latter was based on the former.
Further details can be found in

• Aasi, J. et al. (2014), Class. Quantum Grav. 31, 165014

• Jaranowski, P., Królak, A. and Schutz, B.F. (1998), Phys. Rev. D 58, 063001

• Astone, P., Borkowski, K.M., Jaranowski, P., Pietka M. and Królak, A. (2010), Phys.
Rev. D 82, 022005

• Pisarski, A. and Jaranowski, P. (2015), Class. Quantum Grav. 32, 145014

LIGO also employs a second method, called the Hough transform. The first stage of this
algorithm is the same as the stack-slide method, i.e., coherent matched filtering on shorter
segments of data. The second stage is slightly different, using the Hough transform, which
is a technique for edge-detection in images, to identify tracks through the coherent template
overlaps that might correspond to true signals. Further details can be found in
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Figure 5: Illustration of the semi-coherent search method. The data is divided into shorter
segments, which are searched coherently using waveform templates. The power in the tem-
plates is then summed incoherently along trajectories through the templates that correspond
to EMRI inspiral trajectories. Reproduced from Gair et al. (2005).
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• Astone, P., Colla, A., D?Antonio, S., Frasca, S. and Palomba, C. (2014), Phys. Rev.
D 90, 042002

• Antonucci, F., Astone, P., D?Antonio, S., Frasca, S. and Palomba, C. (2008), Class.
Quantum Grav. 25, 184015

• Krishnan, B., Sintes, A.M., Papa, M.A., Schutz, B.F., Frasca, S. and Palomba, C.
(2004), Phys. Rev. D 70, 082001

4.6 Searches for stochastic backgrounds

Stochastic backgrounds require different search techniques again. It is difficult to identify
a background in a single detector, as it is essentially a noise source which is therefore chal-
lenging to distinguish from instrumental noise. Instead, background searches make use of
multiple detectors and cross-correlate them to identify the common component of the noise.
A typical detection statistic takes the form

YQ =

∫ T

0

dt1

∫ T

0

dt2 s1(t1)Q(t1 − t2)s2(t2)

=

∫ ∞
−∞

df

∫ ∞
−∞

df ′ δT (f − f ′)s̃∗1(f)Q̃(f ′)s̃2(f ′). (65)

In the above, Q(t) is a filter, which is analogous to the filter introduced in the single source
detection case discussed earlier. The function δT (f) is a finite time approximation to the
Dirac delta function

δT (f) =

∫ T/2

−T/2
e−2πiftdt =

sin(πfT )

πf
.

A generic gravitational wave background can be decomposed into a superposition of plane
waves and a sum over polarisation states

hij(t, ~x) =

∫ ∞
−∞

df

∫
S2

dΩ
k̂

e2πif(t−k̂·~x)HA(f, k̂)eAij(k̂).

Here A labels the polarisation state, which for gravitational waves in general relativity is
either plus or cross, A = {+,×}, but in general metric theories could also include scalar
and vector modes. The quantities eAij(k̂) are the polarisation basis tensors for the individual
polarisation modes

e+
ij(k̂) = l̂il̂j − m̂im̂j, e×ij(k̂) = l̂im̂j + m̂il̂j

where

k̂ = sin θ cosφ x̂+ sin θ sinφ ŷ + cos θ ẑ

l̂ = cos θ cosφ x̂+ cos θ sinφ ŷ − sin θ ẑ

m̂ = − sinφ x̂+ cosφ ŷ (66)

are the standard spherical-polar coordinate basis vectors on the sky at colatitude θ and
longitude φ. The quantities HA(f, k̂) are the amplitudes of the various modes. For an unpo-
larised, stationary and statistically isotropic gravitational wave background, the expectation
value of pairs of these amplitudes is given by〈

HA(f, k̂)HA′∗(f ′, k̂′)
〉

= H(f)δ(f − f ′)δ2(k̂, k̂′)δAA′ , (67)
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where H(f) is a real-valued function that depends on the energy density in the gravitational
wave background and can be related to ΩGW(f), as introduced in the previous chapter, by

H(f) =
3H2

0

32π3

ΩGW(f)

|f |3
.

The response of a particular gravitational wave detector, labelled by I, to a gravitational
wave field can be written in the form

sI(t) =

∫ ∞
−∞

dτ

∫
R3

d3~y hij(t− τ, ~x− ~y)Rij
I (τ, ~y)

= (2π)3

∫ ∞
−∞

df

∫
R3

d3~k h̃ij(f,~k)R̃ij
I (f,~k)ei(2πft−

~k·~xI ) (68)

where Rij(t, ~x) is the impulse response of the detector, and the integral is over the spatial
extent of the detector. Combining Eq. (68) with Eq. (67) we obtain

〈YQ〉 =
T

2

∫ ∞
−∞

γ12(|f |)Q̃(f)H(f)df

where γ(|f |) is the overlap reduction function, which depends on the relative separation
and orientation of the two detectors and is defined by

γ12(|f |) =

∫
S2

dΩk̂ R̃
A
1 (f, k̂)R̃A∗

2 (f, k̂)e−2πifk̂·(~x1−~x2)

where
R̃A
I (f, k̂) = (2π)eeAij(k̂)R̃ij

I (f, 2πfk̂).

The overlap reduction function for various combinations of ground-based interferometers
and resonant bar detectors is shown in Figure 6. Stochastic backgrounds generated by
large numbers of supermassive black hole binary inspirals are also the primary source for
pulsar timing arrays. In that case, the “detector” is the measured redshift of a pulsar. The
overlap reduction function for the detection of an isotropic stochastic background by cross-
correlation of the measured redshifts of two different pulsars must be a function of only the
angular separation between the pulsars on the sky. The resulting overlap reduction function
curve is called the Hellings and Downs curve and is shown in Figure 7. Overlap reduction
functions for non-isotropic backgrounds, for example anisotropic or correlated backgrounds,
of backgrounds with non-GR polarisations, look different, providing a diagnostic for these
physical properties of any observed stochastic background.

As in the case of the optimal filter, it is possible to maximise the signal-to-noise ratio of
the filtered output. This takes a similar form to the optimal filter result

Q̃(f) ∝ γ(|f |)ΩGW(|f |)
|f |3S1(|f |)S2(|f |)

where S1(|f |) and S2(|f |) are the power spectral densities of the noise in the two detectors.
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Figure 6: Overlap reduction function of the LIGO Livingston detector with LIGO Hanford
(lower purple curve), Virgo (red curve), GEO (upper purple curve), TAMA (now obsolete)
(blue curve) and the resonant bar detector Allegro (green curve), which was also sited in
Louisiana. This was the network of detectors operating at the time of initial LIGO’s science
runs.
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Figure 7: Overlap reduction function for the cross-correlation of the redshifts of two pulsars
observed in a pulsar timing array, as a function of the angular separation of the two pul-
sars on the sky. This is known as the Hellings and Downs curve and the observation of a
cross-correlation pattern that matches with this expectation is critical for the pulsar timing
detection of gravitational waves.


