Lecture Recording

Note: These lectures will be recorded and posted onto the IMPRS website

Dear participants,

We will record all lectures on “Making sense of data: introduction to statistics for
gravitational wave astronomy”, including possible Q&A after the presentation,
and we will make the recordings publicly available on the IMPRS lecture
website at:

- https:/ /imprs-gw-lectures.aei.mpg.de /2021-making-sense-of-data/

By participating in this Zoom meeting, you are giving your explicit consent to
the recording of the lecture and the publication of the recording on the course
website.



Making sense of data: introduction to
statistics for gravitational wave astronomy

Lecture 6: Bayesian inference part 1

AEI IMPRS Lecture Course
Jonathan Gair jgair@aei.mpg.de

0.30
——— posterior _
~——— prior 0.25
——— likelihood (rescaled) _
0.20 -

mi(6) p(d | 6)
p(o| d)=
p(d)




Bayesian hypothesis testing

The denominator in Bayes’ Theorem

p(g‘X, M) s p(X| ,M)p(

is the Bayesian evidence

—

p(x| M) = / p(x|6, M)p(6] M) 0

Here we have explicitly introduced the model M to emphasise that the result
depends on the model assumed. The evidence is the probability that the observed
data would have been produced under the given model and so can be used for
model selection.

Models are compared using the posterior odds ratio

Bl p(x|My) p(M;)
p(x|Mz) p(M>)

The first term is the Bayes Factor. The second is the prior odds ratio.




Bayesian hypothesis testing

The interpretation of the posterior odds ratio is somewhat arbitrary, but Kass and
Rafferty (1995) suggested the following scale:

Bayes Factor Interpretation
<3 No evidence of M; over M,
>3 Positive evidence for M,
> 20 Strong evidence for M,
> 150 Very strong evidence for M,

Interpreting the Bayes factor as a ratio of probabilities, these thresholds correspond
to “p-values” of 0.25, 0.05, 0.007, but the interpretation is different.

In practice, posterior odds ratios can also be used as a test statistic, with significance
and power computed via simulation in the usual (frequentist) way:.



Bayesian hypothesis testing

Computing Bayesian evidences is challenging. These can be estimated using the
harmonic mean of the likelihood of samples from the posterior

1 [ 1 px|0p@) .,z 1~ 1
E‘/mxﬁ) -2ahg PIpST,

Necessarily, there are more posterior samples where the likelihood and hence
posterior are higher.

Regions where the likelihood is small are less well sampled and subject to more
Monte Carlo error. This makes the above expression very unstable and potentially
inaccurate.

Other techniques, such as nested sampling, have been developed to overcome these
problems and produce robust evidence estimates.



Bayesian hypothesis testing

Example: Normal models. Suppose we have a 2-dimensional likelihood

A i [ 1 ((wl —2M1)2 & 20(% — 1) (@2 — pia) + (@2 —2M2)2>]

and set priors of the form

m 1 11575 (115) 1 Ihise
— ex , = X
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and we want to test the models

Ml:,ugz(), MQIILLQC( O0,00)

The evidence ratio assuming 3 > 0% can be found to be (see lecture notes)

Size of extra Ooy 2 0 / exp Improvement
dimension ‘V H— 22 o2 “in fit to data

This can be interpreted as automatically implementing Occam’s Razor.




Predictve checking

[t is natural to want to test if the assumed model is a good fit to the data. In a
Bayesian context this is achieved through predictive checking.

The prior predictive distribution is defined by

p(x) = / p(x|0)p(6)d8

—

S

This is the distribution of observed data sets within the model assumed in the prior.
If the observed data is not very consistent with this distribution, the prior
parameters might need to be adjusted.

The posterior predictive distribution is defined similarly

pylx) = /  plylAp(@x)ad]

This is the distribution of new datasets based on the model fitted to the data. The
observed data should lie within the body of this distribution if the model is good.



Example: linear model

The predictive distribution can be used to compute the distribution of summary
quantities. The value of those summary quantities in the observed data can then be
compared to these distributions.

Recall the linear model we fit to the mtcars data set

yiNN(X;'FB;O-Q)) ZzlnaN
p(B,7) = p(7) Hp(ﬁj)

B; ~ N(ug,;, O'%j), T ~ Gammal(a, b)

We fit the model and compute the predictive distribution of the minimum,
maximum, median and skewness of future samples of the same size.

[t is better to choose quantities that are somewhat “orthogonal” to what is adjusted
to fit the data.
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Robust regression

If the posterior predictive distribution indicates some problems, or inspection of the
data reveals the presence of some outliers, it is common practice to use robust
regression.

This involves replacing the Normal distribution by a t-distribution in the model
T
Yi ~ Xy B+ at,

The degrees of freedom can be fixed or treated as a parameter to be varied, in which
case we require a prior. A Gamma prior is appropriate

v ~ Gamma(c, d)

The t-distribution has heavier tails than the Normal distribution and so is better able
to fit data that has outliers.

This approach has been used in GW parameter estimation (the student-t likelihood
of Rover et al.). In that context it also arises from marginalisation over power
spectral density uncertainty.
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In the case of the mtcars data set, robust
regression moves the skewness of the observed
data from the 99.6% percentile to the 96.3%
percentile. The observed data is still an outlier,
but not so much.
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Hierarchical Models

Often the prior for a single data set represents a model for a population of events,
e.g., compact binary coalescences.

The parameters of that prior encode the details of the population and are also of
interest. This leads to the notion of a hierarchical model.

In a hierarchical model, the parameters of the prior (termed hyperparameters) are
regarded as random variables, on which a hyperprior is defined. This can be
continued ad infinitum - using another hyperprior on the hyperparameters of the
first hyperprior etc.

Such models can quickly get complicated as additional layers are included. They can
be simplified by imposing a conditional independence structure.

Hierarchical models can be most easily summarised using graphical models, which
are directed acyclic graphs showing conditional dependencies.
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@ @ @
@ () @
\d o

Example:
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Selection Eftects

No instrument is arbitrarily sensitive and therefore some types of source are easier
to see than others. This is important to remember in hierarchical models for
populations when we are combining only detected events.

There are two ways to think about selection effects.

One way is to acknowledge that we only include “detected” events in the analysis
and then write down a likelihood for detected events. This must integrate to 1 over
all “detected” or “above threshold” data sets.

d, 1 A ’
p(x|60, 0obs) = —p(x|0), where p,(0 :/ D
(x| ) ps(0) (x[6) ) x>threshold

(x0)dx

This framework assumes a priori that the number of detected events contains no
information about the parameters of interest.



Selection Effects

Alternatively we write down the likelihood for all events, both detected events
(indexed by i) and undetected events (indexed by ;)

({8 {8} b0 13) o | T o1 8) S5 ()] | T 018) 55 (5) | exo - (3)]
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Marginalising over the unobserved data we obtain

e (O

(a9 o102 @] 5D o ()

Nodet (X) = dx dé’ (X | 9) (31]; ()\)

/{x<threshold}

Marginalising over the unknown number of unobserved events then gives

o ({0 19) | T (s 19) S5 (3)| e [ ()



Selection Eftects

Writing
dN

v :Np(g\ X’)

and introducing a scale-invariant prior on the overall rate

p(N)m%

and noting

—

Naa(X) = N / p(x|)p(81X)dfdx = Np, (%)
x>threshold

we recover the previous result.



Selection Eftects

Typically in population analysis each event has parameters, §, that we are interested
in and which are drawn from the population prior with hyperparameters X.

The “detected events” likelihood becomes

= 1 S . N
p(x|A, obs) = _,/pXQp dé. Whereps)\:/ /px@p A)dfdx
(x] ) o0 (x]0)p(0] 1) (A) E (x]0)p(0] 1)

The joint likelihood of data and source parameter values, conditioned on detection is

p(x, 81X, 0bs) = p(x|6, obs)p(f]X, obs)

The first term is as before, but conditioned on source parameters

p(x]6, obs) = p(X|9)_) . where p(obs|d) =

p(obs|6)

/ p(x|6)dx
x>threshold



Selection Eftects

The second term is the prior on source parameters for sources above threshold which is
not the same as the population prior.

H(61X, obs) — p(f,0bs|\) _ p(obs|d, Np(6])) (obs\é)g(m)
p(obs|\) p(obs|) Ps(A)

Putting things together, the terms relating to selection on source parameters cancel

and the joint likelihood is just

Ty p(x|6)p(6]\)
x, 0|\, obs =
g ¥ ps(A)

The posterior on the source parameters is therefore unchanged from what you
would write down if there were no selection effects. Selection only affects inference
on population parameters.

— - —

p(6]x, X, obs) o p(x|0)p(f|\)



Hierarchical model example: cosmology

Example: Cosmology with GW170817 The first binary neutron star observed by LIGO/
Virgo was also seen as a short GRB and a kilonova in the electromagnetic spectrum. This
allowed the identification of a unique host galaxy, NGC 4993, and hence a determination of
the source redshift. The GW observation provided a measurement of the luminosity distance
and together these enable a constraint on the local expansion rate of the Universe, the Hubble
constant Ho, since v=cz=Hod locally.

We construct a hierarchical model for this measurement as follows

* The gravitational wave data, xgw, depends on the source parameters, and we can
marginalise over all of these except distance and inclination

p(rxaw | d,cost) = /p(:EGW | d, cos i, \) p(A)dX

* The measured recessional velocity depends on the Hubble velocity, HOd, and the
peculiar velocity of the host galaxy which we model as

p (v, | d,vp, Hy) = N v, + Hod, o | (vr)



Hierarchical model example: cosmology

e The smoothed peculiar velocity field can be measured from galaxy correlations

p({vp) | 1p) = N |0,0%, | ()
e The combined likelihood is given by the product

1
p(xaw, Ur, (Up) | d,cos ¢, vy, Hy) = N.(Hq

)p(wew | d, cos¢) p(vy | d, vy, Ho) p((vp) | vp)

e The selection effects are encoded in

Ns(Hy) = / dxdd dv, dcos ¢ dxgw dv, d{v,) [p(XGW | d, cose, N) p(vr | d, vy, Ho)

xaw >threshold

% p({vp) | vp) p(X) p(d) p(vy) pleos )]

e For the GW170817 measurement the selection effect was independent of H.

e Finally we specify our priors p(d, cos ¢, v,, Hy) = p(d)p(cos ¢)p(v,)p(Hyp)



Hierarchical model example: cosmology

Graphical model for GW170817 cosmological analysis




Hierarchical model example: cosmology

The posterior is

H
p(Ho,d,cost, v, | zZaw, Ur, (Up)) X JS'((E(T)(?) p(xagw | d,cost) p(v, | d,vp, Hy)

X p({vp) | vp) p(d) p(vp) plcos )

Integrating over d, v and cos i we obtain the marginal posterior on Hy

H
p(Ho | zaw, Ur, (Vp)) X ﬁ((;)) /dddvp dcos tp(zagw | d,cost) p(vy | d,v,, Hp)
S 0

X p((vp) | vp) p(d) p(vp) p(cos )

For multiple events the posterior becomes

p(Ho | (2w, obs (0)'D) g

N
H {/ dd dv,, dcos Lp(xgw | d, cos L)p(vf; | d,v,, Ho)

1=1

x p((vp)" | vp) p(d) p(vp) p(cost) |



Hierarchical model example: cosmology
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