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❖ Dear participants, 

❖ We will record all lectures on “Making sense of data: introduction to statistics for 
gravitational wave astronomy”, including possible Q&A after the presentation, 
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website at: 
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Lecture 6: Bayesian inference part II
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Bayesian hypothesis testing
❖ The denominator in Bayes’ Theorem

❖ is the Bayesian evidence

❖ Here we have explicitly introduced the model M to emphasise that the result 
depends on the model assumed. The evidence is the probability that the observed 
data would have been produced under the given model and so can be used for 
model selection.

❖ Models are compared using the posterior odds ratio

❖ The first term is the Bayes Factor. The second is the prior odds ratio.
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Solution

The expected posterior loss in this case is the posterior probability that |✓ � d| > �.
The interval that minimises this loss, among intervals of fixed length 2�, is the interval
that contains the highest posterior probability. This is called the highest posterior density

interval.

We see that all of the “natural” ways to obtain a point estimate from a Bayesian posterior
can be interpreted in terms of Bayes rule’s with di↵erent loss functions.

4.6 Bayesian hypothesis testing

The denominator that appears in Bayes’ theorem is the Bayesian evidence and can be com-
puted via

p(x) =

Z
p(x | ~✓)p(~✓)d~✓.

When writing down Bayes’ theorem we suppressed the fact that all of the quantities were
conditioned on the particular model we were assuming for the data generating process.
Explicitly reintroducing the dependence on the model, M , we have

p(~✓|x,M) =
p(x|~✓,M)p(~✓|M)

p(x|M)
.

This makes it clear that the evidence, p(x|M), represents the probability of seeing the model

data under model M and can be thought of as the likelihood for the model given the observed
data. If we now have more than one model, M1 and M2 say, that we believe could describe
the data, we can compute the posterior odds ratio for M1 over M2

O12 =
p(x|M1)

p(x|M2)

p(M1)

p(M2)
.

The first term is called the Bayes factor and is the ratio of the model likelihoods. The
second term is the prior odds ratio, which represents our prior belief about the relative
probability of the two models. The posterior odds is the ratio of model probabilities based
on the observed data and is the basis for Bayesian hypothesis testing. For O12 � 1 we favour
model M1, while for O12 ⌧ 1 we favour M2.

In the case of a flat prior on models the prior odds ratio is just 1 and decisions are based
on the Bayes factor. Kass and Ra↵erty (1995) described a ‘rule of thumb’ for interpreting
Bayes’ factors. This is summarised in Table 2. This Table can be used to interpret the
results of Bayesian hypothesis tests. Alternatively, the distribution of the Bayes factor can
be computed under the null hypothesis and used, in a frequentist way, to produce a mapping
between p-values and Bayesian posterior odds ratios.

The models M1 and M2 need not be very di↵erent, but could, for example, represent dif-
ferent regions of the parameter space of a distribution, e.g., M1 : ✓ 2 ⇥1 versus M2 : ✓ 2 ⇥2.
If the two hypotheses are both simple then the Bayes factor reduces to the likelihood ratio,
which we saw was the optimal test statistic in the frequentist hypothesis testing context.

p(x|M) =

Z
p(x|~✓,M)p(~✓|M) d~✓

<latexit sha1_base64="KtVNcT86eebwgsYoH9Rs3MRBZjc="></latexit>
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❖ The interpretation of the posterior odds ratio is somewhat arbitrary, but Kass and 
Rafferty (1995) suggested the following scale:

❖ Interpreting the Bayes factor as a ratio of probabilities, these thresholds correspond 
to “p-values” of 0.25, 0.05, 0.007, but the interpretation is different.

❖ In practice, posterior odds ratios can also be used as a test statistic, with significance 
and power computed via simulation in the usual (frequentist) way. 
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Bayes Factor Interpretation
< 3 No evidence of M1 over M2

> 3 Positive evidence for M1

> 20 Strong evidence for M1

> 150 Very strong evidence for M1

Table 2: Table for intepretation of Bayes’ factors, as presented in Kass and Ra↵erty (1995).

4.7 Predictive checking

In both a frequentist and a Bayesian context it is natural to ask whether the model is a good
representation of the observed data. In the Bayesian context this is accomplished by using
predictive distributions.

Definition: the prior predictive distribution is the probability distribution

p(x) =

Z

~✓2⇥
p(x|~✓)p(~✓)d~✓.

This is the likelihood weighted by the assigned prior distribution and therefore represents

our a priori belief about the distribution of data sets that would be observed. Similarly, we
have the following Definition: the posterior predictive distribution is the probability

distribution

p(y|x) =
Z

~✓2⇥
p(y|~✓)p(~✓|x)d~✓.

This is the likelihood weighted by the posterior probability based on the observed data x

and is our expectation about the distribution of future data sets y.
The posterior predictive distribution can be used to assess whether the observed data is

unusual within the posterior distribution, which is an indicator about whether or not the
model is a good fit. Based on the observed data x we generate a large number of new data
sets {y1, . . .yN} that are similar to x, i.e., they consist of the same number of observations.
For each data set we compute a set of summary statistics, and hence obtain the distribution
of the summary statistics over many realisations of the posterior predictive distribution. We
can then assess the “p-value” of the observed data within these distributions. If it looks like
an outlier in any one of these distributions this suggests the model is not a good fit. Suitable
summary statistics could include the maximum, minimum, median, skewness, kurtosis etc.
Ideally we choose summary statistics that are orthogonal to the model parameters to increase
sensitivity, since we are using the data twice (once to compute the posterior and once to
compare to the predictive distribution). Statistics that are e↵ectively tuned to the observed
data will tend to lie in the middle of the predictive distributions by construction, even if the
model is poor. We will see an example of this in the next section.

4.8 Example: regression

To illustrate some of the ideas discussed above we will present a Bayesian analysis of a
regression problem. We suppose that we have made measurements of a set of values, {yi},
corresponding to sets of p known explanatory variables, {xi}, and we believe that these
follow a linear relationship with equal variance normally distributed errors

yi ⇠ N(xT

i
~�, �2), i = 1, . . . , N.



❖ Computing Bayesian evidences is challenging. These can be estimated using the 
harmonic mean of the likelihood of samples from the posterior

❖ Necessarily, there are more posterior samples where the likelihood and hence 
posterior are higher.

❖ Regions where the likelihood is small are less well sampled and subject to more 
Monte Carlo error. This makes the above expression very unstable and potentially 
inaccurate.

❖ Other techniques, such as nested sampling, have been developed to overcome these 
problems and produce robust evidence estimates.
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64 Introduction to Statistics for GWs

Bayes Factor Interpretation
< 3 No evidence of M1 over M2
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> 20 Strong evidence for M1

> 150 Very strong evidence for M1
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approximated by a sum over samples

1

Z =

Z
1

p(x | ~✓)
p(x | ~✓)p(~✓)

Z d~✓ ⇡ 1

M

MX

i=1

1

p(x | ~✓i)
.

In other words it is the harmonic mean of the likelihoods of the samples. This is an extremely
unstable approximation, however, as this sum is dominated by points with small likelihoods,
but these are precisely the regions where there will be fewer samples and hence larger Monte
Carlo error. Other techniques, such a nested sampling, can be used to compute evidences
more accurately and these will be discussed in the next chapter.
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This is the likelihood weighted by the posterior probability based on the observed data
x and is our expectation about the distribution of future data sets y.

The posterior predictive distribution can be used to assess whether the observed data is
unusual within the posterior distribution, which is an indicator about whether or not the
model is a good fit. Based on the observed data x we generate a large number of new data
sets {y1, . . .yN} that are similar to x, i.e., they consist of the same number of observations.
For each data set we compute a set of summary statistics, and hence obtain the distribution
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summary statistics could include the maximum, minimum, median, skewness, kurtosis etc.



❖ Example: Normal models. Suppose we have a 2-dimensional likelihood 

❖ and set priors of the form

❖ and we want to test the models 

❖ The evidence ratio assuming                  can be found to be (see lecture notes)

❖ This can be interpreted as automatically implementing Occam’s Razor.
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Example: Suppose we have a two dimensional Normal likelihood of the form

p(x|~✓) =

p
1� ⇢2

2⇡�1�2

exp


�
1
✓
(x1 � µ1)2

�2

1

+ 2
⇢(x1 � µ1)(x2 � µ2)

�1�2

+
(x2 � µ2)2

�2

2

◆�
(67)

and use priors for the parameters µ1 and µ2 of the form

p(µ1) =
1

⌃1

p
2⇡

exp


�

1

2⌃2

1

µ2

1

�
, p(µ2) =

1

⌃2

p
2⇡

exp


�

1

2⌃2

2

µ2

2

�
. (68)

We are interested in comparing the two models

M1 : µ2 = 0, M2 : µ2 2 (�1,1).

The evidence for M1 can be computed as

Z1 =
1

2⇡�2

s
1� ⇢2

�2

1
+ ⌃2

1

exp


�
x2

2
(�2

1
� (1� ⇢2)⌃2
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) + 2⇢x1x2�1�2 + �2

2
x2
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2�2

2
(�2

1
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1
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�

and for M2 it is
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) + ⌃2

1
(�2
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2
)
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
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x2

2
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1
+ �2

1
) + 2⇢x1x2�1�2 + x2

1
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+ �2

2
) + 2�2

1
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(69)

which gives the posterior odds ratio in favour of M2, for equal prior odds (which is just the
Bayes factor)

O21 =
Z2

Z1

= �2

s
⌃2

1
+ �2

1

⌃2

1
((1� ⇢2)⌃2
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�
. (70)
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This is di�cult to interpret, but if we now assume that ⌃2

1
� �2

1
, i.e., that the prior in µ1 is

much broader than the typical measurement uncertainty, the odds ratio simplifies to

O21 ⇡ �2
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exp


(1� ⇢2)x2

2
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�

We see that there is a competition between the size of the additional variable dimension
(characterised by ⌃2) in the first term and the weight of evidence for the additional e↵ect
in the data (characterised by the second term). Only if the addition of the extra dimension
significantly improves the fit to the data (characterised by x2 which is e↵ectively the peak
of the posterior in µ2 when that parameter is allowed to vary) should the more complex
model be favoured. If the fit does not improve, then the addition of the extra dimension is
penalised by the first term and so the more complex model should not be preferred. It is
often said that Bayesian posterior odds ratios automatically encode the notion of “Occam’s
razor”, i.e., one should use the simplest model that adequately describes the data since
adding extra degrees of freedom always improves a fit. This is the sense in which it is meant.
Addition of extra dimensions typically includes a prior penalty, as we see here, which will
lead to the disfavouring of an alternative model unless the likelihood shows a significantly
great improvement when the extra degrees of freedom are included.

4.7 Predictive checking

In both a frequentist and a Bayesian context it is natural to ask whether the model is a good
representation of the observed data. In the Bayesian context this is accomplished by using
predictive distributions.

Definition: the prior predictive distribution is the probability distribution

p(x) =

Z

~✓2⇥
p(x|~✓)p(~✓)d~✓.

This is the likelihood weighted by the assigned prior distribution and therefore represents
our a priori belief about the distribution of data sets that would be observed. Similarly, we
have the following

Definition: the posterior predictive distribution is the probability distribution

p(y|x) =

Z

~✓2⇥
p(y|~✓)p(~✓|x)d~✓.

This is the likelihood weighted by the posterior probability based on the observed data
x and is our expectation about the distribution of future data sets y.

The posterior predictive distribution can be used to assess whether the observed data is
unusual within the posterior distribution, which is an indicator about whether or not the
model is a good fit. Based on the observed data x we generate a large number of new data
sets {y1, . . .yN} that are similar to x, i.e., they consist of the same number of observations.
For each data set we compute a set of summary statistics, and hence obtain the distribution
of the summary statistics over many realisations of the posterior predictive distribution. We
can then assess the “p-value” of the observed data within these distributions. If it looks like
an outlier in any one of these distributions this suggests the model is not a good fit. Suitable

Introduction to Statistics for GWs 65

This is di�cult to interpret, but if we now assume that ⌃2

1
� 1, i.e., that the prior in µ1 is

much broader than the typical measurement uncertainty, the odds ratio simplifies to

O21 ⇡ �2

s
1

(1� ⇢2)⌃2

2
+ �2

2

exp


(1� ⇢2)x2

2

2�2

2

�

We see that there is a competition between the size of the additional variable dimension
(characterised by ⌃2) in the first term and the weight of evidence for the additional e↵ect
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of the posterior in µ2 when that parameter is allowed to vary) should the more complex
model be favoured. If the fit does not improve, then the addition of the extra dimension is
penalised by the first term and so the more complex model should not be preferred. It is
often said that Bayesian posterior odds ratios automatically encode the notion of “Occam’s
razor”, i.e., one should use the simplest model that adequately describes the data since
adding extra degrees of freedom always improves a fit. This is the sense in which it is meant.
Addition of extra dimensions typically includes a prior penalty, as we see here, which will
lead to the disfavouring of an alternative model unless the likelihood shows a significantly
great improvement when the extra degrees of freedom are included.

4.7 Predictive checking

In both a frequentist and a Bayesian context it is natural to ask whether the model is a good
representation of the observed data. In the Bayesian context this is accomplished by using
predictive distributions.

Definition: the prior predictive distribution is the probability distribution

p(x) =
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This is the likelihood weighted by the assigned prior distribution and therefore represents
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Predictive checking
❖ It is natural to want to test if the assumed model is a good fit to the data. In a 

Bayesian context this is achieved through predictive checking.

❖ The prior predictive distribution is defined by

❖ This is the distribution of observed data sets within the model assumed in the prior. 
If the observed data is not very consistent with this distribution, the prior 
parameters might need to be adjusted.

❖ The posterior predictive distribution is defined similarly 

❖ This is the distribution of new datasets based on the model fitted to the data. The 
observed data should lie within the body of this distribution if the model is good.
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Example: linear model
❖ The predictive distribution can be used to compute the distribution of summary 

quantities. The value of those summary quantities in the observed data can then be 
compared to these distributions.

❖ Recall the linear model we fit to the mtcars data set

❖ We fit the model and compute the predictive distribution of the minimum, 
maximum, median and skewness of future samples of the same size.

❖ It is better to choose quantities that are somewhat “orthogonal” to what is adjusted 
to fit the data. 
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Bayes Factor Interpretation
< 3 No evidence of M1 over M2

> 3 Positive evidence for M1

> 20 Strong evidence for M1

> 150 Very strong evidence for M1

Table 2: Table for intepretation of Bayes’ factors, as presented in Kass and Ra↵erty (1995).

4.7 Predictive checking

In both a frequentist and a Bayesian context it is natural to ask whether the model is a good
representation of the observed data. In the Bayesian context this is accomplished by using
predictive distributions.

Definition: the prior predictive distribution is the probability distribution

p(x) =

Z

~✓2⇥
p(x|~✓)p(~✓)d~✓.

This is the likelihood weighted by the assigned prior distribution and therefore represents

our a priori belief about the distribution of data sets that would be observed. Similarly, we
have the following Definition: the posterior predictive distribution is the probability

distribution

p(y|x) =
Z

~✓2⇥
p(y|~✓)p(~✓|x)d~✓.

This is the likelihood weighted by the posterior probability based on the observed data x

and is our expectation about the distribution of future data sets y.
The posterior predictive distribution can be used to assess whether the observed data is

unusual within the posterior distribution, which is an indicator about whether or not the
model is a good fit. Based on the observed data x we generate a large number of new data
sets {y1, . . .yN} that are similar to x, i.e., they consist of the same number of observations.
For each data set we compute a set of summary statistics, and hence obtain the distribution
of the summary statistics over many realisations of the posterior predictive distribution. We
can then assess the “p-value” of the observed data within these distributions. If it looks like
an outlier in any one of these distributions this suggests the model is not a good fit. Suitable
summary statistics could include the maximum, minimum, median, skewness, kurtosis etc.
Ideally we choose summary statistics that are orthogonal to the model parameters to increase
sensitivity, since we are using the data twice (once to compute the posterior and once to
compare to the predictive distribution). Statistics that are e↵ectively tuned to the observed
data will tend to lie in the middle of the predictive distributions by construction, even if the
model is poor. We will see an example of this in the next section.

4.8 Example: regression

To illustrate some of the ideas discussed above we will present a Bayesian analysis of a
regression problem. We suppose that we have made measurements of a set of values, {yi},
corresponding to sets of p known explanatory variables, {xi}, and we believe that these
follow a linear relationship with equal variance normally distributed errors

yi ⇠ N(xT

i
~�, �2), i = 1, . . . , N.
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Bayesian results Frequentist results
Parameter Posterior mean 95% credible interval MLE 95% confidence interval

�0 10.369 [-5.098,36.349] 11.395 [-5.134,27.922]
�1 1.777 [-0.721,4.166] 1.750 [-0.857,4.169]
�2 -4.335 [-5.702,-2.995] -4.347 [-5.787,-3.009]
�3 0.968 [0.449,1.493] 0.946 [0.410,1.482]
�2 6.978 [4.160,11.729] 6.554 —

Table 3: Comparison between Bayesian and frequentist estimates of the linear model fit to
the mtcars data set.

We want to infer the parameters of the linear relationship, ~�, and the unknown precision
⌧ = 1/�2. We use a Bayesian framework and so must write down prior distributions on these
parameters. We can assume a separable prior

p(~�, ⌧) = p(⌧)
pY

i=1

p(�j)

and take Normal priors for the �j’s and a Gamma prior for ⌧ as these are conjugate priors
in the Normal-Gamma model

�j ⇠ N(µ�j , �
2

�j
), ⌧ ⇠ Gamma(a, b).

In the absence of prior information it is reasonable to set µ�j = 0. Inferred values of
the coe�cients that are non-zero then provide evidence for the existence of a relationship
between the observed data and those explanatory variables. Setting �2

j
to a large value, say

104, indicates large uncertainty in the parameter values and avoids strong prior dependence
in the results. For the prior on ⌧ , it is usual to take small values of a and b, for example
a = b = 0.1 or a = b = 0.01. However, such priors lead to a preferred value (i.e., a peak) in
the prior and so the use of such priors is somewhat controversial.

To illustrate fitting such a model, we can use a standard data set, the mtcars data set,
which is available in the R statistical software package and may also be found online. The
data set contains observations, yi, of the miles driven per gallon in the i’th of 32 di↵erent
models of car, with explanatory variables xi1, the rear axle ratio, xi2, the weight of the i’th
car and xi3, the time to drive 0.25 miles from rest. We fit the model

yi = �0 + �1xi1 + �2xi2 + �3xi3 + "i, "i
iid⇠ N(0, 1/⌧), i = 1, . . . 32,

with �j ⇠ N(0, 1000) and ⌧ ⇠ Gamma(0.1, 0.1). We can use statistical software (in this case
R) to generate samples from the posterior. Techniques for doing this will be discussed in the
next chapter, and in the associated practical. using these samples we can obtain a posterior
mean and 95% symmetric credible interval for each parameter. These can be compared to
the frequentist estimates of the same parameters and the frequentist 95% confidence interval
(see problem sheet 1). This comparison is in Table 3.

The results of the Bayesian fit are quite consistent between the two approaches, although
there are some di↵erences and the interpretation of the results is di↵erent. We now want
to assess the quality of the results. In a frequentist setting, assessment of the quality of a
linear model fit is done through the production of studentised residuals and Q-Q plots. A

Introduction to Statistics for GWs 65

Bayesian results Frequentist results
Parameter Posterior mean 95% credible interval MLE 95% confidence interval

�0 10.369 [-5.098,36.349] 11.395 [-5.134,27.922]
�1 1.777 [-0.721,4.166] 1.750 [-0.857,4.169]
�2 -4.335 [-5.702,-2.995] -4.347 [-5.787,-3.009]
�3 0.968 [0.449,1.493] 0.946 [0.410,1.482]
�2 6.978 [4.160,11.729] 6.554 —

Table 3: Comparison between Bayesian and frequentist estimates of the linear model fit to
the mtcars data set.

We want to infer the parameters of the linear relationship, ~�, and the unknown precision
⌧ = 1/�2. We use a Bayesian framework and so must write down prior distributions on these
parameters. We can assume a separable prior

p(~�, ⌧) = p(⌧)
pY

i=1

p(�j)

and take Normal priors for the �j’s and a Gamma prior for ⌧ as these are conjugate priors
in the Normal-Gamma model

�j ⇠ N(µ�j , �
2

�j
), ⌧ ⇠ Gamma(a, b).

In the absence of prior information it is reasonable to set µ�j = 0. Inferred values of
the coe�cients that are non-zero then provide evidence for the existence of a relationship
between the observed data and those explanatory variables. Setting �2

j
to a large value, say

104, indicates large uncertainty in the parameter values and avoids strong prior dependence
in the results. For the prior on ⌧ , it is usual to take small values of a and b, for example
a = b = 0.1 or a = b = 0.01. However, such priors lead to a preferred value (i.e., a peak) in
the prior and so the use of such priors is somewhat controversial.

To illustrate fitting such a model, we can use a standard data set, the mtcars data set,
which is available in the R statistical software package and may also be found online. The
data set contains observations, yi, of the miles driven per gallon in the i’th of 32 di↵erent
models of car, with explanatory variables xi1, the rear axle ratio, xi2, the weight of the i’th
car and xi3, the time to drive 0.25 miles from rest. We fit the model

yi = �0 + �1xi1 + �2xi2 + �3xi3 + "i, "i
iid⇠ N(0, 1/⌧), i = 1, . . . 32,

with �j ⇠ N(0, 1000) and ⌧ ⇠ Gamma(0.1, 0.1). We can use statistical software (in this case
R) to generate samples from the posterior. Techniques for doing this will be discussed in the
next chapter, and in the associated practical. using these samples we can obtain a posterior
mean and 95% symmetric credible interval for each parameter. These can be compared to
the frequentist estimates of the same parameters and the frequentist 95% confidence interval
(see problem sheet 1). This comparison is in Table 3.

The results of the Bayesian fit are quite consistent between the two approaches, although
there are some di↵erences and the interpretation of the results is di↵erent. We now want
to assess the quality of the results. In a frequentist setting, assessment of the quality of a
linear model fit is done through the production of studentised residuals and Q-Q plots. A



Example: linear model
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Robust regression
❖ If the posterior predictive distribution indicates some problems, or inspection of the 

data reveals the presence of some outliers, it is common practice to use robust 
regression.

❖ This involves replacing the Normal distribution by a t-distribution in the model

❖ The degrees of freedom can be fixed or treated as a parameter to be varied, in which 
case we require a prior. A Gamma prior is appropriate

❖ The t-distribution has heavier tails than the Normal distribution and so is better able 
to fit data that has outliers.

❖ This approach has been used in GW parameter estimation (the student-t likelihood 
of Röver et al.). In that context it also arises from marginalisation over power 
spectral density uncertainty.

yi ⇠ xT
i � + �t⌫

<latexit sha1_base64="K8S8gSgLNZsri1ZqjpBb6XoGFA4=">AAACF3icbVBNSwMxEM36WetX1aOXYBEEoeyqoCcpePFYoV/QrUs2zbbBJLsks2JZ+i+8+Fe8eFDEq978N2bbHrT1wcDjvRlm5oWJ4AZc99tZWFxaXlktrBXXNza3tks7u00Tp5qyBo1FrNshMUxwxRrAQbB2ohmRoWCt8O4q91v3TBseqzoME9aVpK94xCkBKwWlyjDg2DdcYl8SGIRR9jAK+G0d+yEDgo9zry8JhiDzVToKSmW34o6B54k3JWU0RS0offm9mKaSKaCCGNPx3AS6GdHAqWCjop8alhB6R/qsY6kikpluNv5rhA+t0sNRrG0pwGP190RGpDFDGdrO/Hgz6+Xif14nheiim3GVpMAUnSyKUoEhxnlIuMc1oyCGlhCqub0V0wHRhIKNsmhD8GZfnifNk4p3Wjm5OStXL6dxFNA+OkBHyEPnqIquUQ01EEWP6Bm9ojfnyXlx3p2PSeuCM53ZQ3/gfP4AZh+fbw==</latexit>

⌫ ⇠ Gamma(c, d)
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In the case of the mtcars data set, robust
regression moves the skewness of the observed 
data from the 99.6% percentile to the 96.3% 
percentile. The observed data is still an outlier, 
but not so much.



Hierarchical Models

❖ Often the prior for a single data set represents a model for a population of events, 
e.g., compact binary coalescences.

❖ The parameters of that prior encode the details of the population and are also of 
interest. This leads to the notion of a hierarchical model.

❖ In a hierarchical model, the parameters of the prior (termed hyperparameters) are 
regarded as random variables, on which a hyperprior is defined. This can be 
continued ad infinitum - using another hyperprior on the hyperparameters of the 
first hyperprior etc.

❖ Such models can quickly get complicated as additional layers are included. They can 
be simplified by imposing a conditional independence structure.

❖ Hierarchical models can be most easily summarised using graphical models, which 
are directed acyclic graphs showing conditional dependencies.



Graphical Model
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Example: 
p(p, q, r, s, t, u, v, w, x, y, z) =                
             p(x|y, z) p(y|u, w) p(z|r) p(w|v) p(r|p, q) p(v) p(u) p(p) p(q) 



Selection Effects
❖ No instrument is arbitrarily sensitive and therefore some types of source are easier 

to see than others. This is important to remember in hierarchical models for 
populations when we are combining only detected events.

❖ There are two ways to think about selection effects.

❖ One way is to acknowledge that we only include “detected” events in the analysis 
and then write down a likelihood for detected events. This must integrate to 1 over 
all “detected” or “above threshold” data sets.

❖ This framework assumes a priori that the number of detected events contains no 
information about the parameters of interest.
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likelihood of “detected” data sets. If the un-corrected likelihood is p(x|~✓) then the likelihood
for observed events is just

p(x|~✓, obs) =
1

ps(~✓)
p(x|~✓), where ps(~✓) =

Z

x>threshold
p(x|~✓)dx.

The integral is over all data sets that would have been considered as “detections”, i.e.,
passing the threshold for inclusion in inference. What we have done here is renormalise the
likelihood so that it integrates to 1 over all above threshold data sets. Since the partition of
the data into observed and unobserved is a property of x only, the relative probabilities of
di↵erent above threshold data sets must be in proportion to their probabilities in the set of
all data sets.

Usually, the likelihood will depend on parameters of the particular source, ~✓, that are
themselves determined by the priors, which depends on the hyperparameters of the popula-
tion, ~�. Then the likelihood for observed events, marginalised over the source parameters is
simply

p(x|~�, obs) =
1

ps(~�)

Z
p(x|~✓)p(~✓|~�)d~✓, where ps(~�) =

Z

x>threshold

Z
p(x|~✓)p(~✓|~�)d~✓dx.

Usually we are interested in the parameters of individual sources as well as the overall
population parameters. The joint likelihood of x and ~✓, conditioned on detection, is

p(x, ~✓|~�, obs) = p(x|~✓, obs)p(~✓|~�, obs).

The first term is Eq. (4.9.1), but for the source parameters ~✓

p(x|~✓, obs) =
p(x|~✓)

p(obs|~✓)
, where p(obs|~✓) =

Z

x>threshold
p(x|~✓)dx.

The second term is the prior on ~✓ for events above threshold. However, this prior is modified
from p(~✓|~�) by the conditioning on detection, namely

p(~✓|~�, obs) =
p(~✓, obs|~�)

p(obs|~�)
=

p(obs|~✓,~�)p(~✓|~�)

p(obs|~�)
=

p(obs|~✓)p(~✓|~�)

ps(~�)
.

Putting this together we see that the terms relating to selection on ~✓, p(obs|~✓), cancel and
the joint likelihood is

p(x, ~✓|~�, obs) =
p(x|~✓)p(~✓|~�)

ps(~�)

giving a posterior on ~✓
p(~✓|x, ,~�, obs) / p(x|~✓)p(~✓|~�)

which is unchanged from the posterior that would be written down if there is no selection.
We see that the selection e↵ects corrections do not change inference about the parameters
of individual sources, only inference about the hyperparameters governing the population as
a whole.

This approach implicitly assumes that the number of observed events contains no infor-
mation about the unknown parameters. An alternative approach is to write down a joint



Selection Effects
❖ Alternatively we write down the likelihood for all events, both detected events 

(indexed by i) and undetected events (indexed by j)

❖ Marginalising over the unobserved data we obtain
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We can marginalise over the unobserved data to obtain
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We can then marginalise over the unknown number of unobserved events to obtain
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We can now introduce the overall rate in the Unvierse, N , by writing dN/d~✓ = Np(~✓|~�).
Then

Ndet(~�) = N

Z

x>threshold

Z
p(x|~✓)p(~✓|~�)d~✓dx = Nps(~�). (76)

Setting a scale-invariant prior on N (which states that the number of detected events does
not convey information about the unknown parameters of the population), p(N) / 1/N we
can marginalise N out of the likelihood and recover Eq. (4.9.1).

4.9.2 Examples of hierarchical models

We finish this section with two examples of Bayesian hierarchical models.

Example 1: Salmon fishery In a given year, several fish hatcheries located along rivers
in Washington state, USA raise coho salmon from eggs to a juvenile stage. Each hatchery
releases a batch of juvenile fish into the rivers. The fish then travel to the ocean and some
of them return to the hatchery 3 years later. The probability that a juvenile salmon returns
varies between hatcheries due to di↵erent hatchery practices and river conditions at the point
of release. We construct a hierarchical model for this as follows

• Suppose there are J fisheries and nj salmon observed at fishery j.

72 Introduction to Statistics for GWs

likelihood for all events, both the Nobs events that are observed, {xi}, with parameters {~✓i},
and the Nnobs events that are unobserved, {xj}, with parameters {~✓j}. We model the number

of events as a Poisson process with overall rate N(~�), and rate density dN/d~✓. The joint
likelihood is

p
⇣n

~✓i
o
,
n
~✓j
o
, {xi} , {xj} | ~�

⌘
/

"
NobsY

i=1

p
⇣
xi |

~✓i
⌘ dN

d~✓i

⇣
~�
⌘#

⇥

⇥

"
NnobsY

j=1

p
⇣
xj |

~✓j
⌘ dN

d~✓j

⇣
~�
⌘#

exp
h
�N

⇣
~�
⌘i

(72)

We can marginalise over the unobserved data to obtain

p
⇣n

~✓i
o
, {xi} | ~�

⌘
/

"
NobsY

i=1

p
⇣
xi |

~✓i
⌘ dN

d~✓i

⇣
~�
⌘# NNnobs

ndet

⇣
~�
⌘

Nnobs!
exp

h
�N

⇣
~�
⌘i

(73)

where

Nndet

⇣
~�
⌘
⌘

Z

{x<threshold}
dx d~✓ p

⇣
x | ~✓

⌘ dN

d~✓

⇣
~�
⌘
. (74)

We can then marginalise over the unknown number of unobserved events to obtain

p
⇣n

~✓i
o
, {xi} | ~�

⌘
/

"
NobsY

i=1

p
⇣
xi |

~✓i
⌘ dN

d~✓i

⇣
~�
⌘#

exp
h
�Ndet

⇣
~�
⌘i

. (75)

We can now introduce the overall rate in the Unvierse, N , by writing dN/d~✓ = Np(~✓|~�).
Then

Ndet(~�) = N

Z

x>threshold

Z
p(x|~✓)p(~✓|~�)d~✓dx = Nps(~�). (76)

Setting a scale-invariant prior on N (which states that the number of detected events does
not convey information about the unknown parameters of the population), p(N) / 1/N we
can marginalise N out of the likelihood and recover Eq. (4.9.1).

4.9.2 Examples of hierarchical models

We finish this section with two examples of Bayesian hierarchical models.

Example 1: Salmon fishery In a given year, several fish hatcheries located along rivers
in Washington state, USA raise coho salmon from eggs to a juvenile stage. Each hatchery
releases a batch of juvenile fish into the rivers. The fish then travel to the ocean and some
of them return to the hatchery 3 years later. The probability that a juvenile salmon returns
varies between hatcheries due to di↵erent hatchery practices and river conditions at the point
of release. We construct a hierarchical model for this as follows

• Suppose there are J fisheries and nj salmon observed at fishery j.

72 Introduction to Statistics for GWs

likelihood for all events, both the Nobs events that are observed, {xi}, with parameters {~✓i},
and the Nnobs events that are unobserved, {xj}, with parameters {~✓j}. We model the number

of events as a Poisson process with overall rate N(~�), and rate density dN/d~✓. The joint
likelihood is

p
⇣n

~✓i
o
,
n
~✓j
o
, {xi} , {xj} | ~�

⌘
/

"
NobsY

i=1

p
⇣
xi |

~✓i
⌘ dN

d~✓i

⇣
~�
⌘#

⇥

⇥

"
NnobsY

j=1

p
⇣
xj |

~✓j
⌘ dN

d~✓j

⇣
~�
⌘#

exp
h
�N

⇣
~�
⌘i

(72)

We can marginalise over the unobserved data to obtain

p
⇣n

~✓i
o
, {xi} | ~�

⌘
/

"
NobsY

i=1

p
⇣
xi |

~✓i
⌘ dN

d~✓i

⇣
~�
⌘# NNnobs

ndet

⇣
~�
⌘

Nnobs!
exp

h
�N

⇣
~�
⌘i

(73)

where

Nndet

⇣
~�
⌘
⌘

Z

{x<threshold}
dx d~✓ p

⇣
x | ~✓

⌘ dN

d~✓

⇣
~�
⌘
. (74)

We can then marginalise over the unknown number of unobserved events to obtain

p
⇣n

~✓i
o
, {xi} | ~�

⌘
/

"
NobsY

i=1

p
⇣
xi |

~✓i
⌘ dN

d~✓i

⇣
~�
⌘#

exp
h
�Ndet

⇣
~�
⌘i

. (75)

We can now introduce the overall rate in the Unvierse, N , by writing dN/d~✓ = Np(~✓|~�).
Then

Ndet(~�) = N

Z

x>threshold

Z
p(x|~✓)p(~✓|~�)d~✓dx = Nps(~�). (76)

Setting a scale-invariant prior on N (which states that the number of detected events does
not convey information about the unknown parameters of the population), p(N) / 1/N we
can marginalise N out of the likelihood and recover Eq. (4.9.1).

4.9.2 Examples of hierarchical models

We finish this section with two examples of Bayesian hierarchical models.

Example 1: Salmon fishery In a given year, several fish hatcheries located along rivers
in Washington state, USA raise coho salmon from eggs to a juvenile stage. Each hatchery
releases a batch of juvenile fish into the rivers. The fish then travel to the ocean and some
of them return to the hatchery 3 years later. The probability that a juvenile salmon returns
varies between hatcheries due to di↵erent hatchery practices and river conditions at the point
of release. We construct a hierarchical model for this as follows

• Suppose there are J fisheries and nj salmon observed at fishery j.



Selection Effects
❖ Writing

❖ and introducing a scale-invariant prior on the overall rate

❖ and noting

❖ we recover the previous result.
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likelihood for all events, both the Nobs events that are observed, {xi}, with parameters {~✓i},
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We can then marginalise over the unknown number of unobserved events to obtain
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We can now introduce the overall rate in the Unvierse, N , by writing dN/d~✓ = Np(~✓|~�).
Then

Ndet(~�) = N

Z

x>threshold

Z
p(x|~✓)p(~✓|~�)d~✓dx = Nps(~�). (76)

Setting a scale-invariant prior on N (which states that the number of detected events does
not convey information about the unknown parameters of the population), p(N) / 1/N we
can marginalise N out of the likelihood and recover Eq. (4.9.1).

4.9.2 Examples of hierarchical models

We finish this section with two examples of Bayesian hierarchical models.

Example 1: Salmon fishery In a given year, several fish hatcheries located along rivers
in Washington state, USA raise coho salmon from eggs to a juvenile stage. Each hatchery
releases a batch of juvenile fish into the rivers. The fish then travel to the ocean and some
of them return to the hatchery 3 years later. The probability that a juvenile salmon returns
varies between hatcheries due to di↵erent hatchery practices and river conditions at the point
of release. We construct a hierarchical model for this as follows

• Suppose there are J fisheries and nj salmon observed at fishery j.



Selection Effects
❖ Typically in population analysis each event has parameters,   , that we are interested 

in and which are drawn from the population prior with hyperparameters

❖ The “detected events” likelihood becomes

❖ The joint likelihood of data and source parameter values, conditioned on detection is

❖ The first term is as before, but conditioned on source parameters 
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likelihood of “detected” data sets. If the un-corrected likelihood is p(x|~✓) then the likelihood
for observed events is just

p(x|~✓, obs) =
1

ps(~✓)
p(x|~✓), where ps(~✓) =

Z

x>threshold
p(x|~✓)dx.

The integral is over all data sets that would have been considered as “detections”, i.e.,
passing the threshold for inclusion in inference. What we have done here is renormalise the
likelihood so that it integrates to 1 over all above threshold data sets. Since the partition of
the data into observed and unobserved is a property of x only, the relative probabilities of
di↵erent above threshold data sets must be in proportion to their probabilities in the set of
all data sets.

Usually, the likelihood will depend on parameters of the particular source, ~✓, that are
themselves determined by the priors, which depends on the hyperparameters of the popula-
tion, ~�. Then the likelihood for observed events, marginalised over the source parameters is
simply

p(x|~�, obs) =
1

ps(~�)

Z
p(x|~✓)p(~✓|~�)d~✓, where ps(~�) =

Z

x>threshold

Z
p(x|~✓)p(~✓|~�)d~✓dx.

Usually we are interested in the parameters of individual sources as well as the overall
population parameters. The joint likelihood of x and ~✓, conditioned on detection, is

p(x, ~✓|~�, obs) = p(x|~✓, obs)p(~✓|~�, obs).

The first term is Eq. (4.9.1), but for the source parameters ~✓

p(x|~✓, obs) =
p(x|~✓)

p(obs|~✓)
, where p(obs|~✓) =

Z

x>threshold
p(x|~✓)dx.

The second term is the prior on ~✓ for events above threshold. However, this prior is modified
from p(~✓|~�) by the conditioning on detection, namely

p(~✓|~�, obs) =
p(~✓, obs|~�)

p(obs|~�)
=

p(obs|~✓,~�)p(~✓|~�)

p(obs|~�)
=

p(obs|~✓)p(~✓|~�)

ps(~�)
.

Putting this together we see that the terms relating to selection on ~✓, p(obs|~✓), cancel and
the joint likelihood is

p(x, ~✓|~�, obs) =
p(x|~✓)p(~✓|~�)

ps(~�)

giving a posterior on ~✓
p(~✓|x, ,~�, obs) / p(x|~✓)p(~✓|~�)

which is unchanged from the posterior that would be written down if there is no selection.
We see that the selection e↵ects corrections do not change inference about the parameters
of individual sources, only inference about the hyperparameters governing the population as
a whole.

This approach implicitly assumes that the number of observed events contains no infor-
mation about the unknown parameters. An alternative approach is to write down a joint
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Putting this together we see that the terms relating to selection on ~✓, p(obs|~✓), cancel and
the joint likelihood is
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which is unchanged from the posterior that would be written down if there is no selection.
We see that the selection e↵ects corrections do not change inference about the parameters
of individual sources, only inference about the hyperparameters governing the population as
a whole.

This approach implicitly assumes that the number of observed events contains no infor-
mation about the unknown parameters. An alternative approach is to write down a joint
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Selection Effects
❖ The second term is the prior on source parameters for sources above threshold which is 

not the same as the population prior.

❖ Putting things together, the terms relating to selection on source parameters cancel 
and the joint likelihood is just

❖ The posterior on the source parameters is therefore unchanged from what you 
would write down if there were no selection effects. Selection only affects inference 
on population parameters.

Introduction to Statistics for GWs 71

likelihood of “detected” data sets. If the un-corrected likelihood is p(x|~✓) then the likelihood
for observed events is just

p(x|~✓, obs) =
1

ps(~✓)
p(x|~✓), where ps(~✓) =

Z

x>threshold
p(x|~✓)dx.

The integral is over all data sets that would have been considered as “detections”, i.e.,
passing the threshold for inclusion in inference. What we have done here is renormalise the
likelihood so that it integrates to 1 over all above threshold data sets. Since the partition of
the data into observed and unobserved is a property of x only, the relative probabilities of
di↵erent above threshold data sets must be in proportion to their probabilities in the set of
all data sets.

Usually, the likelihood will depend on parameters of the particular source, ~✓, that are
themselves determined by the priors, which depends on the hyperparameters of the popula-
tion, ~�. Then the likelihood for observed events, marginalised over the source parameters is
simply

p(x|~�, obs) =
1

ps(~�)

Z
p(x|~✓)p(~✓|~�)d~✓, where ps(~�) =

Z

x>threshold

Z
p(x|~✓)p(~✓|~�)d~✓dx.

Usually we are interested in the parameters of individual sources as well as the overall
population parameters. The joint likelihood of x and ~✓, conditioned on detection, is

p(x, ~✓|~�, obs) = p(x|~✓, obs)p(~✓|~�, obs).

The first term is Eq. (4.9.1), but for the source parameters ~✓

p(x|~✓, obs) =
p(x|~✓)

p(obs|~✓)
, where p(obs|~✓) =

Z

x>threshold
p(x|~✓)dx.

The second term is the prior on ~✓ for events above threshold. However, this prior is modified
from p(~✓|~�) by the conditioning on detection, namely

p(~✓|~�, obs) =
p(~✓, obs|~�)

p(obs|~�)
=

p(obs|~✓,~�)p(~✓|~�)

p(obs|~�)
=

p(obs|~✓)p(~✓|~�)

ps(~�)
.

Putting this together we see that the terms relating to selection on ~✓, p(obs|~✓), cancel and
the joint likelihood is

p(x, ~✓|~�, obs) =
p(x|~✓)p(~✓|~�)

ps(~�)

giving a posterior on ~✓
p(~✓|x, ,~�, obs) / p(x|~✓)p(~✓|~�)

which is unchanged from the posterior that would be written down if there is no selection.
We see that the selection e↵ects corrections do not change inference about the parameters
of individual sources, only inference about the hyperparameters governing the population as
a whole.

This approach implicitly assumes that the number of observed events contains no infor-
mation about the unknown parameters. An alternative approach is to write down a joint

Introduction to Statistics for GWs 71

likelihood of “detected” data sets. If the un-corrected likelihood is p(x|~✓) then the likelihood
for observed events is just

p(x|~✓, obs) =
1

ps(~✓)
p(x|~✓), where ps(~✓) =

Z

x>threshold
p(x|~✓)dx.

The integral is over all data sets that would have been considered as “detections”, i.e.,
passing the threshold for inclusion in inference. What we have done here is renormalise the
likelihood so that it integrates to 1 over all above threshold data sets. Since the partition of
the data into observed and unobserved is a property of x only, the relative probabilities of
di↵erent above threshold data sets must be in proportion to their probabilities in the set of
all data sets.

Usually, the likelihood will depend on parameters of the particular source, ~✓, that are
themselves determined by the priors, which depends on the hyperparameters of the popula-
tion, ~�. Then the likelihood for observed events, marginalised over the source parameters is
simply

p(x|~�, obs) =
1

ps(~�)

Z
p(x|~✓)p(~✓|~�)d~✓, where ps(~�) =

Z

x>threshold

Z
p(x|~✓)p(~✓|~�)d~✓dx.

Usually we are interested in the parameters of individual sources as well as the overall
population parameters. The joint likelihood of x and ~✓, conditioned on detection, is

p(x, ~✓|~�, obs) = p(x|~✓, obs)p(~✓|~�, obs).

The first term is Eq. (4.9.1), but for the source parameters ~✓

p(x|~✓, obs) =
p(x|~✓)

p(obs|~✓)
, where p(obs|~✓) =

Z

x>threshold
p(x|~✓)dx.

The second term is the prior on ~✓ for events above threshold. However, this prior is modified
from p(~✓|~�) by the conditioning on detection, namely

p(~✓|~�, obs) =
p(~✓, obs|~�)

p(obs|~�)
=

p(obs|~✓,~�)p(~✓|~�)

p(obs|~�)
=

p(obs|~✓)p(~✓|~�)

ps(~�)
.

Putting this together we see that the terms relating to selection on ~✓, p(obs|~✓), cancel and
the joint likelihood is

p(x, ~✓|~�, obs) =
p(x|~✓)p(~✓|~�)

ps(~�)

giving a posterior on ~✓
p(~✓|x, ,~�, obs) / p(x|~✓)p(~✓|~�)

which is unchanged from the posterior that would be written down if there is no selection.
We see that the selection e↵ects corrections do not change inference about the parameters
of individual sources, only inference about the hyperparameters governing the population as
a whole.

This approach implicitly assumes that the number of observed events contains no infor-
mation about the unknown parameters. An alternative approach is to write down a joint
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a whole.

This approach implicitly assumes that the number of observed events contains no infor-
mation about the unknown parameters. An alternative approach is to write down a joint
likelihood for all events, both the Nobs events that are observed, {xi}, with parameters {~✓i},
and the Nnobs events that are unobserved, {xj}, with parameters {~✓j}. We model the number
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likelihood is
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Hierarchical model example: cosmology
❖ Example: Cosmology with GW170817  The first binary neutron star observed by LIGO/

Virgo was also seen as a short GRB and a kilonova in the electromagnetic spectrum. This 
allowed the identification of a unique host galaxy, NGC 4993, and hence a determination of 
the source redshift. The GW observation provided a measurement of the luminosity distance 
and together these enable a constraint on the local expansion rate of the Universe, the Hubble 
constant H0, since v=cz=H0d locally.

❖ We construct a hierarchical model for this measurement as follows

• The gravitational wave data, xGW, depends on the source parameters, and we can 
marginalise over all of these except distance and inclination

• The measured recessional velocity depends on the Hubble velocity, H0d, and the 
peculiar velocity of the host galaxy which we model as
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• The joint posterior on the set ({pj}, a, b) is

p({pj}, a, b|x) / p(x|{pj})

"
JY

j=1

p(pj|a, b)

#
p(a, b).

Note that the hyperprior on the hyperparameters appears only once as these parameters
are common to all of the individual observations of fisheries.

• The marginal distribution on the hyperparameters (a, b) can be found by marginalising
over the {pj}’s

p(a, b|x) / p(a, b)
JY

j=1

B (a+ xj, b+ nj � xj)

B(a, b)
.

• Marginals on individual pj’s can be found in a similar way.

Example 2: Gravitational wave cosmology In August 2017 the LIGO/Virgo gravi-
tational wave detectors observed gravitational waves from the inspiral and merger of a binary
neutron star for the first time, GW170817. There was both a short gamma ray burst and
a kilonova associated with this event, which allowed the unique identification of the host
galaxy, NGC 4993, and hence the recessional velocity (redshift) of the host. The gravi-
tational waves provide a measurement of the luminosity distance of the source. The rate
of expansion of the Universe as a function of distance is a key observable for constraining
cosmological parameters. The relationship is linear at low distances and the constant of
proportionality is called the Hubble constant,

v = cz = H0d,

where v is the recessional velocity due to the expansion of the Universe, z is the corre-
sponding redshift, H0 is the Hubble constant and d is the luminosity distance. At low dis-
tance/redshift, the peculiar velocity of individual galaxies, relative to the overall expansion
of the Universe (the “Hubble flow”) is significant and so the observed recessional velocity,
vr, must be corrected by writing vr = H0d+vp. Observations of galaxies provide an estimate
of the smoothed peculiar velocity field, hvpi. We are interested in inferring the value of the
Hubble constant and build a hierarchical model as follows.

• The observed gravitational wave data, xGW, depends on the waveform of the source,
which in turn depends on the source parameters. Most of these are not of interest,
denoted ~�, and so we can marginalise them out, but we treat distance d and inclination,
◆, separately.

p(xGW | d, cos ◆) =

Z
p(xGW | d, cos ◆,~�) p(~�)d~�. (77)

• The measured recessional velocity, vr, depends on the true recessional velocity, which
depends on the peculiar velocity, vp, and the Hubble redshift, H0d. Representing the
electromagnetic measurement uncertainty as a Normal distribution we have

p (vr | d, vp, H0) = N
⇥
vp +H0d, �

2

vr

⇤
(vr) (78)
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Hierarchical model example: cosmology
• The smoothed peculiar velocity field can be measured from galaxy correlations

• The combined likelihood is given by the product

• The selection effects are encoded in

• For the GW170817 measurement the selection effect was independent of H0. 

• Finally we specify our priors

Introduction to Statistics for GWs 75

• The measured smoothed peculiar velocity field at the location of the host galaxy de-
pends on the true peculiar velocity there (and perhaps also on other quantities, but
we suppress other dependencies here)

p (hvpi | vp) = N
h
vp, �

2

vp

i
(hvpi) . (79)

• The combined likelihood for the observations of xGW, hvpi and vr is

p(xGW, vr, hvpi | d, cos ◆, vp, H0) =

1

Ns(H0)
p(xGW | d, cos ◆) p(vr | d, vp, H0) p(hvpi | vp). (80)

Here the factor Ns(H0) is the selection e↵ects factor discussed earlier, which corrects
for the fact that we only analyse events that exceed some threshold in the gravitational
wave detector

Ns(H0) =

Z

detectable

d~� dd dvp dcos ◆ dxGW dvr dhvpi

⇥

h
p(xGW | d, cos ◆,~�) p(vr | d, vp, H0)

⇥ p(hvpi | vp) p(~�) p(d) p(vp) p(cos ◆)
i
, (81)

• We define priors on H0, d, vp and cos ◆. These are independent and so we write down
a product prior

p(d, cos ◆, vp, H0) = p(d)p(cos ◆)p(vp)p(H0).

We use flat priors on cos ◆ and vp, a volumetric prior on d, p(d) / dVc/dd, where Vc

is the comoving volume. We leave p(H0) unspecified, but note that the analysis in
Abbott et al. (2017) used a scale-invariant prior p(H0) / 1/H0.

• We have now fully specified the hierarchical model. A graphical representation of this
model is given in Figure 9. The posterior can now be found as

p(H0, d, cos ◆, vp | xGW, vr, hvpi)

/
p(H0)

Ns(H0)
p(xGW | d, cos ◆) p(vr | d, vp, H0)

⇥ p(hvpi | vp) p(d) p(vp) p(cos ◆), (82)

• This posterior can be marginalised over d, cos ◆ and vp to give

p(H0 | xGW, vr, hvpi) /
p(H0)

Ns(H0)

Z
dd dvp dcos ◆

⇥ p(xGW | d, cos ◆) p(vr | d, vp, H0)

⇥ p(hvpi | vp) p(d) p(vp) p(cos ◆) . (83)

p(xGW, vr, hvpi | d, cos ◆, vp, H0) =
1

Ns(H0)
p(xGW | d, cos ◆) p(vr | d, vp, H0) p(hvpi | vp)

<latexit sha1_base64="tf64tqRBkh4HiV/zyBRAtqbRS7s="></latexit>

Ns(H0) =

Z

xGW>threshold

d~� dd dvp dcos ◆ dxGW dvr dhvpi
h
p(xGW | d, cos ◆,~�) p(vr | d, vp, H0)

⇥ p(hvpi | vp) p(~�) p(d) p(vp) p(cos ◆)
i
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pends on the true peculiar velocity there (and perhaps also on other quantities, but
we suppress other dependencies here)

p (hvpi | vp) = N
h
vp, �

2

vp

i
(hvpi) . (79)

• The combined likelihood for the observations of xGW, hvpi and vr is

p(xGW, vr, hvpi | d, cos ◆, vp, H0) =

1

Ns(H0)
p(xGW | d, cos ◆) p(vr | d, vp, H0) p(hvpi | vp). (80)

Here the factor Ns(H0) is the selection e↵ects factor discussed earlier, which corrects
for the fact that we only analyse events that exceed some threshold in the gravitational
wave detector

Ns(H0) =

Z

detectable

d~� dd dvp dcos ◆ dxGW dvr dhvpi

⇥

h
p(xGW | d, cos ◆,~�) p(vr | d, vp, H0)

⇥ p(hvpi | vp) p(~�) p(d) p(vp) p(cos ◆)
i
, (81)

• We define priors on H0, d, vp and cos ◆. These are independent and so we write down
a product prior

p(d, cos ◆, vp, H0) = p(d)p(cos ◆)p(vp)p(H0).

We use flat priors on cos ◆ and vp, a volumetric prior on d, p(d) / dVc/dd, where Vc

is the comoving volume. We leave p(H0) unspecified, but note that the analysis in
Abbott et al. (2017) used a scale-invariant prior p(H0) / 1/H0.

• We have now fully specified the hierarchical model. A graphical representation of this
model is given in Figure 9. The posterior can now be found as

p(H0, d, cos ◆, vp | xGW, vr, hvpi)

/
p(H0)

Ns(H0)
p(xGW | d, cos ◆) p(vr | d, vp, H0)

⇥ p(hvpi | vp) p(d) p(vp) p(cos ◆), (82)

• This posterior can be marginalised over d, cos ◆ and vp to give

p(H0 | xGW, vr, hvpi) /
p(H0)

Ns(H0)

Z
dd dvp dcos ◆

⇥ p(xGW | d, cos ◆) p(vr | d, vp, H0)

⇥ p(hvpi | vp) p(d) p(vp) p(cos ◆) . (83)
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Graphical model for GW170817 cosmological analysis
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❖ The posterior is

❖ Integrating over d, v and cos i we obtain the marginal posterior on H0

❖ For multiple events the posterior becomes

p(H0, d, cos ◆, vp | xGW, vr, hvpi) /
p(H0)

Ns(H0)
p(xGW | d, cos ◆) p(vr | d, vp, H0)

⇥ p(hvpi | vp) p(d) p(vp) p(cos ◆)
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p(H0 | xGW, vr, hvpi) /
p(H0)

Ns(H0)

Z
dd dvp dcos ◆p(xGW | d, cos ◆) p(vr | d, vp, H0)

⇥ p(hvpi | vp) p(d) p(vp) p(cos ◆)
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p(H0 | {xi
GW, v

i
r, hvpii}) /

p(H0)

NN
s (H0)

NY

i=1

Z
dd dvp dcos ◆p(x

i
GW | d, cos ◆) p(vir | d, vp, H0)

⇥ p(hvpii | vp) p(d) p(vp) p(cos ◆)
⇤
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