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❖ Having observed data x we often want to ask if it is consistent with some pre-
conceived assumptions, for example the form of the probability distribution from 
which the data is drawn or the parameters of that distribution.

❖ Hypothesis testing is usually formulated as a test of a reference null hypothesis, H0, 
against an alternative hypothesis, H1.

❖ If a hypothesis is completely specified it is called simple otherwise it is composite.

❖ Examples: 

❖ H0: “the average number of gravitational wave events {n1, …, n7} observed on 
different days of the week is the same” is simple.

❖ H0: “a trigger in a gravitational wave detector is due to noise” is composite, as the 
instrumental noise distribution is not completely specified.

❖ H0: “the number of gravitational wave events per year is Poisson(  )” is composite.

Hypothesis testing: key concepts

�
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❖ The outcome of a hypothesis is a decision to reject or accept (not to reject) the null 
hypothesis.

❖ The decision is based on the value of a test statistic, t(x). Values of the test statistic 
leading to acceptance of the hypothesis form the acceptance region. Values leading 
to rejection form the critical region (or rejection region).

❖ There are two types of error that can be made

- Reject H0 when H0 is true           - Type I error

- Fail to reject H0 when it is false - Type II error

❖ The probability of a Type I error,     , is the significance level (or size) of the test.

❖ 1 - the probability of a Type II error,                     , is the power of the test. This is the 
probability of correctly rejecting H0.

❖ Type I errors are considered worse, so we usually quote the significance when 
describing test results or comparing tests.

Hypothesis testing: key concepts
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Test statistics
❖ Test statistics used for hypothesis testing need to have certain properties

❖ In traditional hypothesis testing a threshold is set on the test statistic and values 
exceeding that threshold lead to rejection.

❖ It is now common to quote the p-value or significance probability of a test result. 
This is the smallest significance level at which the observed test statistic would have 
led to rejection of the hypothesis.
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3.2 Test statistic

Often to construct a test (i.e. the decision whether to reject H0 or not based on observed
data x), a test statistic is used.

Definition 10. A real-valued function t(x) on X is a test statistic for testing H0 i↵

(i) values of t are ordered with respect to the evidence for departure from H0

(ii) the distribution of T = t(X) under H0 is known, at least approximately. For composite

H0 the distribution should be (approximately) the same for all simple hypotheses making

up H0.

For any observation x, we measure the consistency of x with H0 using the significance

probability or the p-value, e.g. if larger values of t correspond to stronger evidence for
departure from H0, the p-value is defined by

p = P(T � t(x)|H0),

the probability (under H0) of seeing the observed value of t or any more extreme value. The
smaller the value of p the greater the evidence against H0.

3.3 Alternative hypothesis

Can be specified or unspecified.

3.3.1 Pure significance tests

In a pure significance test, only the null hypothesis H0 is explicitly specified. The p-value
of the observed value under the null distribution is evaluated, and if it is su�ciently small,
the null hypothesis would be rejected. Such tests are done if we want to avoid specifying a
parametric family of alternative distributions.

There will often be multiple quantities that could be computed under the null hypothesis
and we can choose any of them to evaluated the distribution of the test statistic. The best
choice can be guided if we have a specific idea of the type of departure from H0 we are
looking for, e.g.,

• Directional data: Might look for a tendency for the observed directions to cluster about
a (possibly unknown) direction. But not a specific set of alternatives such as von Mises
distributions.

• Pois(✓): if the alternative is not a Poisson distribution, we might test whether variance
6= expectation.

An important class of pure significance tests are goodness of fit tests where either the
sample distribution function P̂X(x) =

1

n

P
n

i=1
I(x 6 xi) or the histogram are compared to

those of the null distribution.

Examples
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Alternative hypothesis
❖ The alternative hypothesis can be left unspecified, leading to a pure significance 

test. This avoids having to specify H1.

❖ The choice of test statistic can be based on the type of deviation from H0 that the 
tester is interested in, e.g., look for clustering in observed right ascensions of 
gravitational wave sources.

❖ Goodness of fit tests compare the sample distribution function, or histogram of 
event frequencies to the null distribution.

❖ Example: event frequencies on days of the week. Use Pearson’s chi-squared test, 
comparing

❖ Alternative hypotheses can also be specified, e.g.
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• Event frequency on di↵erent days: H0 : X1, . . . , X7 ⇠ Mult(n; 1
7
, . . . , 1

7
).

With no particular alternative we might use Pearson’s �2 test, comparing

X2 =
7X

i=1

�
xi � n

7

�2
n

7

with �2

6
.

• Right ascension of GW sources: If alternative to H0 is clustering about the reference
direction (e.g. galactic centre) we could use

P
cos xj, the projection onto the reference

axis of the resultant sum vector (
P

cos xj,
P

sin xj).

• Pois(✓) : might use index of dispersion,

d =

P
(xi � ȳ)2

ȳ
,

which is approximately �2 with (n� 1) degrees of freedom under H0 for ✓ � 1.

Note that given
P

Xj = s, the distribution of X1, . . . , Xn is Mult(s, 1

n
, . . . , 1

n
) and

d is the �2 statistic for testing the fit of this distribution.

3.3.2 Specified alternative hypothesis

For a parametrised family of distributions p(x| ✓), ✓ 2 ⇥, say H0 : ✓ = ✓0, then

H1 : ✓ 2 ⇥1 ⇢ ⇥ \ {✓0},

e.g. ✓ 6= ✓0 (two-sided), ✓ > ✓0 or ✓ < ✓0 (one-sided).
Below we consider two cases: with simple and composite alternative hypotheses (and a

simple null hypothesis).

With composite alternative hypotheses, the power of the test becomes the power function
defined over ✓ 2 ⇥1:

⌘(✓) = P(reject H0| ✓) = P✓(reject H0).

3.4 Critical regions

In §4.2 we defined for each x 2 Y the significance probability

p = P(T � t(x)|H0)

associated with a test statistic t. A di↵erent, but equivalent, approach defines a test using
critical regions rather than test statistics. This

(i) facilitates comparison of di↵erent tests of H0 according to their properties under H1;

(ii) is useful for establishing a connection between tests and confidence regions.

For any ↵ in the interval (0, 1), a subset R↵ of Y is a critical region of size ↵ if

P(X 2 R↵|H0) = ↵ (54)

Interpretations of R↵:
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Critical regions
❖ Tests can also be defined in terms of critical regions instead of test statistics.

❖ Points in        are regarded as inconsistent with H0 or “significant at level    “.

❖ A significance test is defined by a set of critical regions                          satisfying

❖ The significance probability (p-value) for data x is

❖ Tests based on test statistics have critical regions of the form
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Interpretations of R↵:
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(i) points in R↵ are regarded as not consistent with H0 at level ↵;

(ii) points in R↵ are “significant at level ↵”;

(iii) if x 2 R↵, then H0 is “rejected” in a test of size ↵.

A significance test is defined by a set of critical regions {R↵ : 0 < ↵ < 1} satisfying

R↵1 ⇢ R↵2 if ↵1 < ↵2. (55)

Thus, for example, if data x are significant at the 1% level, they are also significant at the
5% level.

The significance probability (also called p-value) for data x is then defined as

P = inf(↵;x 2 R↵),

i.e. the smallest ↵ for which x is significant at level ↵.
The definition of a test in §3.2 corresponds to critical regions of the form

Rt

↵
= {x : t(x) � t↵},

where t↵ is the upper ↵ point of T = t(X) under H0, since

P(X 2 Rt

↵
|H0) = P(t(X) � t↵|H0) = ↵,

by the definition of t↵; also if ↵1 < ↵2 then t↵1 > t↵2 and Rt
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• Xj independent N(µ, �2) (� known and hence =1 without loss of generality) To test
H0 : µ = µ0 vs µ > µ0, obvious test statistics are Ȳ or (Ȳ � µ0)
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p
n. The significance

probability is

P = P
�
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p
n � ��1(1� ↵)) = ↵,

as required, and if ↵1 < ↵2, then ��1(1� ↵1) > ��1(1� ↵2), so that R↵1 ⇢ R↵2 . Also

inf(↵;x 2 R↵) = inf(↵; (ȳ � µ0)
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Confidence intervals from critical regions
❖ Critical regions for hypothesis tests provide another way to obtain confidence 

intervals. Suppose                 denotes a size-    critical region for testing

❖ Define

❖ then

❖ so               is a               confidence interval for    . 

❖ Example: For n IID exponential random variables the best size-    critical region for 
testing                against               is 

❖ which leads to the                confidence region 
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3.5 Construction of confidence intervals using critical regions

The construction of hypothesis tests leads naturally to the construction of confidence inter-
vals and regions. For any value  0 of  , let R↵( 0) be a size-↵ critical region for testing the
null hypothesis  =  0 against  6=  0 (or possibly  <  0 or  >  0). For any x define

S↵(x) = { 0 : x 62 R↵( 0)}.

Then S↵(X) is a (1� ↵) confidence interval for  since

P(S↵(X) 3  0; 0,�) = P(X 62 R↵( 0) :  0,�) = 1� ↵ 8 0,�

[R̄↵( 0) comprises x values judged consistent with  0 (at level ↵), so S↵(x) comprises  
values consistent with x.]

If ↵1 < ↵2, then from (19) { 0 : x 2 R↵1( 0)} ⇢ { 0 : x 2 R↵2( 0)}, so that (53) holds.
For scalar  , critical regions for alternatives  <  0 lead to upper confidence limits.

Example

• Exp(�): Find the best size-↵ critical region for testing � = �0 against � < �0.

The best size-↵ critical region for testing � = �0 against � < �0 is R↵(�0) = {x :P
xj > 1

2
��1

0
�2

2n
(↵)}. The corresponding (1 � ↵) confidence region for � is {�0 :P

xj  1

2
��1

0
�2

2n
(↵)} i.e. {�0 : �0  1

2
(
P

xj)�1�2

2n
(↵)}, so that 1

2
(
P

xj)�1�2

2n
(↵)} is

the (1� ↵) upper confidence limit for �.

3.6 Examples of hypothesis tests

We give three commonly encountered examples of hypothesis tests.

3.6.1 z-test

Suppose that we observe two independent samples

X1, . . . , Xn ⇠ N(µ1, �
2), Y1, . . . , Ym N(µ2, �

2).

We assume additionally that �2 is known and we are interested in testing the hypothesis

H0 : µ1 � µ2 = 0 versus H1 : µ1 � µ2 6= 0.

If the null hypothesis is violated we expect that the magnitude of the di↵erence in sample
means, |X̄ � Ȳ |, will be large. The statistic

Z =

✓
1

n
+

1

m

◆� 1
2 (X̄ � Ȳ )

�

follows a N(0, 1) distribution under the null hypothesis so we use a critical region of the form

|z| > z↵
2

to define a test with significance ↵. Here z↵
2
denotes the upper ↵/2 point in the Normal

distribution, i.e., the point such that

P(X ⇠ N(0, 1) > z↵
2
) =

↵

2
.

H0 :  =  0 versus H1 :  6=  0
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means, |X̄ � Ȳ |, will be large. The statistic

Z =

✓
1

n
+

1

m

◆� 1
2 (X̄ � Ȳ )
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Hypothesis test examples: z-test
❖ We observe data

❖ We assume       is known and want to test

❖ The statistic

❖ follows an N(0,1) distribution under H0 and so the critical region takes the form
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Hypothesis test examples: t-test
❖ As in the previous example, we observe data

❖ We now assume       is unknown and want to test

❖ The statistic

❖ follows an tm+n-2 distribution and so the critical region takes the form
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3.5 Construction of confidence intervals using critical regions
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P(S↵(X) 3  0; 0,�) = P(X 62 R↵( 0) :  0,�) = 1� ↵ 8 0,�
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Example
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the (1� ↵) upper confidence limit for �.
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3.6.2 t-test

We now suppose that we want to test the same hypothesis as in the previous example, but
assuming that �2 is not known. Once again, we expect the di↵erence in sample means to be
large when the null hypothesis is false, but exactly how large now depends on the unknown
value of �2. If we use the same test statistic, but with the known variance replaced by the
estimated value we have

T =

✓
1

n
+

1

m

◆� 1
2 (X̄ � Ȳ )

�̂
where �̂2 =

1

m+ n� 2

 
nX

i=1

(Xi � X̄)2 +
mX

j=1

(Yi � Ȳ )2
!

which follows a tm+n�2 distribution under the null hypothesis.
The critical region of a size-↵ test is to reject H0 when

|t| > t↵
2
,

where z↵
2
denotes the upper ↵/2 point in the t-distribution with m+n�2 degrees of freedom.

3.6.3 Analysis of variance: F-test

Suppose we have observations of random variables Xij where j = 1, . . . , ni labels di↵erent
observations of one particular group, and i = 1, . . . , k labels the di↵erent groups. We denote
the mean in each group by

X̄i• =
1

ni

niX

j=1

Xij

and the overall mean by

X̄•• =
1

N

X

ij

Xij, N =
kX

i=1

ni.

We are interested in testing that the means of all the groups are equal. If this is true then
we expect that the between samples sum of squares

SSb =
X

i

ni(x̄i• � x̄••)
2

is comparable to the within samples sum of squares

SSw =
X

ij

(xij � xi•)
2.

If the means are di↵erent then we expect the former to be larger than the latter. Therefore,
we reject the null hypothesis for large values of SSb/SSw. The quantity

F =
(N � k)SSb

(k � 1)SSw

follows an Fk�1,N�k-distribution under the null hypothesis and so our critical regions are of
the form to reject H0 when

F > Fk�1,N�k(↵)

the upper ↵ critical point of the Fk�1,N�k distribution.
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❖ We observe ni samples, denoted xij for j=1,…,ni, in each of k categories and we want to 
test the hypothesis that the means in all the families are equal. We denote the sample 
mean in each group by

❖ and the overall sample mean by

❖ We define the between samples sum of squares and within samples sum of squares 
by

❖ The test statistic                                                              follows an Fk-1,n-k distribution.

❖ Critical regions take the form

Hypothesis test examples: F-test
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!

which follows a tm+n�2 distribution under the null hypothesis.
The critical region of a size-↵ test is to reject H0 when

|t| > t↵
2
,

where z↵
2
denotes the upper ↵/2 point in the t-distribution with m+n�2 degrees of freedom.

3.6.3 Analysis of variance: F-test

Suppose we have observations of random variables Xij where j = 1, . . . , ni labels di↵erent
observations of one particular group, and i = 1, . . . , k labels the di↵erent groups. We denote
the mean in each group by

X̄i• =
1

ni

niX

j=1

Xij

and the overall mean by

X̄•• =
1

N

X

ij

Xij, N =
kX

i=1

ni.

We are interested in testing that the means of all the groups are equal. If this is true then
we expect that the between samples sum of squares

SSb =
X

i

ni(x̄i• � x̄••)
2

is comparable to the within samples sum of squares

SSw =
X

ij

(xij � xi•)
2.

If the means are di↵erent then we expect the former to be larger than the latter. Therefore,
we reject the null hypothesis for large values of SSb/SSw. The quantity

F =
(N � k)SSb

(k � 1)SSw

follows an Fk�1,N�k-distribution under the null hypothesis and so our critical regions are of
the form to reject H0 when

F > Fk�1,N�k(↵)

the upper ↵ critical point of the Fk�1,N�k distribution.

36 Introduction to Statistics for GWs

3.6.2 t-test

We now suppose that we want to test the same hypothesis as in the previous example, but
assuming that �2 is not known. Once again, we expect the di↵erence in sample means to be
large when the null hypothesis is false, but exactly how large now depends on the unknown
value of �2. If we use the same test statistic, but with the known variance replaced by the
estimated value we have

T =

✓
1

n
+

1

m

◆� 1
2 (X̄ � Ȳ )
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Calculating test statistic thresholds
❖ Thresholds for hypothesis tests can be 

constructed in three ways

- Analytically: the distribution of the test 
statistic may take a known form, e.g., testing 
need for parameters in a linear model

- Using a Normal approximation: depending 
on the form of the test statistic, the CLT can 
be used to approximate the distribution, e.g., 

- From a simulation study: H0 is normally 
fully specified, so it can be used to 
numerically construct the distribution of t(x).

❖ The power of the test can be similarly evaluated.

3 month
observation

1 year
observationX =

X
xj ⇠ N

✓
n

�0
,
n

�2
0

◆
for testing � = �0 in E(�0)
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Caution: multiple testing corrections
❖ Often the same data will be used for multiple hypothesis tests. If m independent tests 

of significance    are carried out on the same data, the combined significance is

❖ To achieve a certain target significant for the set of tests, the individual tests should 
have significance                                        . 

❖ For small significances and numbers of tests, this is approximately                      , which 
is called the Bonferroni correction.

❖ The total significance can be divided unevenly between the different tests. The Holm-
Bonferroni method sets                                            , where i labels the tests in order of p-
value (starting from the smallest).

❖ Multiple tests are usually not really independent, so these are all conservative 
procedures. The true significance of the family of tests must usually be evaluated 
through simulation.

❖ In LIGO this effect is referred to as a trials factor.
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3.7 Calculating thresholds for tests

For the examples above the test statistics followed known distributions under the null hy-
pothesis and so the critical values can be directly calculated. This is not always possible. In
other situations it might be possible to compute the mean, µ, and variance, �2, of the test
statistic, if not its full distribution. In that case, a Normal approximation can often be used
by appealing to the Central Limit Theorem.

Example: E(�): we saw above that X =
P

xj can be used for testing � = �0 versus
� < �0. While in this case we know the exact distribution of the test statistic, if we did not
we can approximate

X ⇠ N

✓
n

�0

,
n

�2

0

◆

and reject the hypothesis at significance ↵ if

�0X � np
n

> z↵.

The power of the test can be approximated in a similar way, by writing down a Normal
approximation to the distribution of the test statistic under the alternative hypothesis.

If the mean and variance cannot be easily calculated, or the form of the test statistic
does not lend itself to approximation by the Central Limit Theorem, then usually the best
approach is to do a simulation study, i.e., generate many realisations of the test statistic
under H0 and determine thresholds numerically. In principle, the power of the test can be
evaluated in a similar way although this might not be practical for composite alternative
hypotheses.

3.8 Multiple testing

When presented with new data, there is a temptation to keep asking di↵erent questions of
the same data. When doing this you have to be careful to avoid multiple testing (or, in
the language of the gravitational wave community trials factors). If you keep carrying out
independent tests that have a significance of ↵ then you would expect to reject a hypothesis
every 1/↵ tests purely by chance. Therefore, if you plan to carry out m independent tests
and want the overall significance to be ↵, the significance levels applied to the individual
tests must be lower.

If we carry out m independent tests, each with significance ↵, then the combined signif-
icance is

1� (1� ↵)m = ↵c.

To reach a target significance of the combined tests requires using individual tests with
significance ↵ = 1 � (1 � ↵c)1/m = 1 � exp(log(1 � ↵c)/m) ⇡ ↵c/m. The first expression is
the Ŝidák correction, while the latter correction is referred to as the Bonferroni correction.

It is also possible to not divide the total significance evenly between the di↵erent indi-
vidual tests. The Holm-Bonferroni method orders the individual test p-values and then tests
the i’th (starting from the smallest) at a significance level of ↵c/(m� i+ 1). This approach
gives better overall performance.

In practice, multiple tests on the same data will not be independent and so using the
corrections based on independence will be conservative and the true significance of any
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❖ Hypothesis tests may be more or less specific based on prior information. Avoid the 
temptation to make them more specific after observing the data.

❖ Example: LIGO observes for 8 months from January to August and sees (1, 0, 0, 0, 0, 
1, 1, 4) events. Is the excess of events in August significant?

- The probability of seeing 4 or more events in a specific month is ~1.2% 
(assuming a Poisson distribution with rate 0.875) or ~0.62% (assuming a 
multinomial distribution with equal probabilities in all bins and 7 events).

- The correct question is “How improbable is it to see 4 or more events in one 
month out of the eight?”. The probabilities are then 8 times higher, giving 9.8% 
or 5% respectively.

- We can use past data to inform future tests, but these aren’t necessarily more 
powerful than analysing the combined data set. Suppose the next set of 
observations is (0, 1, 0, 1, 1, 0, 0, 2) then seeing 2 events in August has a 12% 
probability (in the multinomial analysis). But the combined observations of (1, 
1, 0, 1, 1, 1, 1, 6) have probability of 0.18%.

Caution: don’t change the question!



❖ In 2002, the EXPLORER and 
NAUTILUS teams announced an 
excess of events towards the galactic 
centre, based on an excess of events in 
one bin.

❖ After seeing the data and realising that 
bin corresponded to increased 
sensitivity toward the galactic centre, 
they decided that they should ask “is 
there an excess in this particular bin?”.

❖ Such an excess in one (unspecified) bin 
was not significant.

❖ The observation was not reproduced 
in subsequent data.

Caution: don’t change the question!



ROC Curves
❖ A receiver operator characteristic (ROC) curve is a plot of the power (or detection rate) 

versus significance (or false alarm probability).
❖ Tests with ROC curves that are further from the diagonal are better, i.e., more powerful.

3 month LISA mission, 1 interferometer, SNR threshold 20.



Designing tests: Neyman-Pearson Lemma
❖ The “best” test is the most powerful test at a given significance. Under certain 

circumstances the best test is given by the likelihood ratio

❖ For testing a simple hypothesis against a simple alternative

❖ the Neyman-Pearson lemma states that the optimal test is a likelihood ratio test 
with critical regions of the form

❖ Example: X1,…,Xn IID from          . H0 is               versus H1:                           . The 
optimal test is based on

❖ with critical regions
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by computing the area between the curve and the diagonal line. Sometimnes the curves can
cross, so one test may be better at one significance level and another at another. The best
test then depends on what regime you are operating in.

In the following subsections we will present a number of results that describe how to find
tests that have the highest power at a given significance, under various assumptions about
the hypotheses and the underlying distributions. As we shall see below, it is not always
possible to find a test that is the best everywhere.

3.10 Designing the best test: simple null and alternative hypothe-
ses

Consider null and alternative hypotheses H0, H1 corresponding to completely specified
p.d.f.’s p0, p1 forX. For these hypotheses, comparison between the critical regions of di↵erent
tests is in terms of

P(X 2 R↵|H1)

the power of a size-↵ critical region R↵ for alternative H1. A best critical region of size ↵
is one with maximum power.

In terms of p0, p1, the power is
Z

R↵

p1(x)dx =

Z

R↵

p0(x)r(x)dx

 
or
X

R↵

p0(x)r(x)

!

= E{r(X)|X 2 R↵;H0}

where

r(x) =
p1(x)

p0(x)
=

L(✓; H1)

L(✓; H0)
,

the likelihood ratio (LR) for H1 vs H0. We can prove that the power is maximized when
R↵ has the form {x : r(x) � k↵} or {x : L(✓;H1)

L(✓;H0)
� k↵}, i.e. when R↵ is a LR critical region.

Thus we have the Neyman-Pearson lemma.

Theorem 4. (Neyman-Pearson lemma). For any size ↵, the LR critical region is the best

critical region for testing simple hypotheses H0 vs H1. (It is also better than any critical

region of size < ↵.)

A LR test is a test whose critical regions are LR critical regions for all ↵ for which such
a size-↵ region exists (all ↵ in the continuous case).

Examples

• Angles: If H0, H1 correspond to a Uniform distribution and a von Mises distribution
with parameter ✓1, the LR is

r(x) =
p1(x)

p0(x)
= {2⇡I0(✓1)}�n

e✓1
P

j cosxj

(2⇡)�n
,

which is an increasing function of t(x) =
P

cos xj. So the LR critical regions have
the form {x :

P
cos xj > t↵}. For any ↵, t↵ is given by P(

P
cosXj � t↵|H0) =

↵. From §3.3
P

cosXj is approximately N(0, 1
2
n) under H0, so t↵ is approximately

�
1

2
n
�1/2

��1(1� ↵). Note that the critical regions, and hence the test, do not depend
on the value of ✓1.

H0 : ✓ = ✓0 versus H1 : ✓ = ✓1
<latexit sha1_base64="GYyI67+trNJZzTN3I5QI1NBgH9E="></latexit>
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• E(�) : X1, . . . , Xn are i.i.d. with d.f. 1�e��y (y > 0). H0 is � = �0; H1 is � = �1 < �0

r(x) =
p1(x)

p0(x)
=

✓
�1

�0

◆n

exp{(�0 � �1)
X

xj},

which is increasing in
P

xj. So the test is based on
P

xj or 2�0

P
Xj, which is �2

2n

under H0, and the critical regions are {x :
P

xj >
1

2
��1

0
�2

2n
(↵)}, where �2

2n
(↵) is the

upper ↵ point of �2

2n
. The power is

P(2�0

X
Xj > �2

↵
|H1) = P

✓
2�1

X
Xj >

�1

�0

�2

2n
(↵)|H1

◆

= Q2n

✓
�1

�0

�2

2n
(↵)

◆

where Q2n is 1� distribution function for �2

2n
.

For comparison, we might base a test on x(1), which has distribution function 1�e�n�y;
size ↵ critical regions are given by {x : x(1) > �(n�0)�1 ln↵}, and the power is ↵�1/�0 ,

which is < Q2n

⇣
�1
�0
�2

↵

⌘
for n > 1 and �1 < �0, and does not depend on n.

3.11 Designing the best test: simple null and composite alterna-
tive hypotheses

Suppose now there is a parametric family {p(x| ✓) : ✓ 2 ⇥1} of alternative p.d.f.’s for X.
The power of a size-↵ critical region R↵ generalizes to the size-↵ power function

pow(✓;↵) = P(X 2 R↵| ✓)

=

Z

R↵

p(x| ✓)dy
 
or
X

R↵

p(x| ✓)dy
!

(✓ 2 ⇥1).

A size-↵ critical region R↵ is then uniformly most powerful size ↵ (UMP size ↵) if it
has maximum power uniformly over ⇥1. A test is UMP if all its critical regions are UMP.
More formally

Definition 11. A uniformly most powerful or UMP test, �0(Y), of size ↵ is a test t(y)
for which

(i) E✓�0(Y)  ↵ 8 ✓ 2 ⇥0;

(ii) given any other test �(·) for which E✓�(Y)  ↵ 8 ✓ 2 ⇥0, we have E✓�0(Y) �
E✓�(Y) 8 ✓ 2 ⇥1.

Such tests cannot be found in general, as this requires that the Neyman-Pearson test
should be the same for every pair of simple hypotheses. However, for one sided testing
problems, i.e., tests of the form H0 : ✓  ✓0 against H1 : ✓ > ✓0, there are a wide class of
parametric families for which UMP tests exist. These are distributions that have monotone
likelihood ratio or MLR.

E(�)
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has maximum power uniformly over ⇥1. A test is UMP if all its critical regions are UMP.
More formally

Definition 11. A uniformly most powerful or UMP test, �0(Y), of size ↵ is a test t(y)
for which

(i) E✓�0(Y)  ↵ 8 ✓ 2 ⇥0;

(ii) given any other test �(·) for which E✓�(Y)  ↵ 8 ✓ 2 ⇥0, we have E✓�0(Y) �
E✓�(Y) 8 ✓ 2 ⇥1.

Such tests cannot be found in general, as this requires that the Neyman-Pearson test
should be the same for every pair of simple hypotheses. However, for one sided testing
problems, i.e., tests of the form H0 : ✓  ✓0 against H1 : ✓ > ✓0, there are a wide class of
parametric families for which UMP tests exist. These are distributions that have monotone
likelihood ratio or MLR.
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lemma does not apply. What we are instead interested in are uniformly most 
powerful (UMP) tests.
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P
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P
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P
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1
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��1
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◆
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↵

⌘
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(✓ 2 ⇥1).

A size-↵ critical region R↵ is then uniformly most powerful size ↵ (UMP size ↵) if it
has maximum power uniformly over ⇥1. A test is UMP if all its critical regions are UMP.
More formally

Definition 11. A uniformly most powerful or UMP test, �0(X), of size ↵ is a test t(x)
for which

(i) E✓�0(X)  ↵ 8 ✓ 2 ⇥0;

(ii) given any other test �(·) for which E✓�(X)  ↵ 8 ✓ 2 ⇥0, we have E✓�0(X) �
E✓�(X) 8 ✓ 2 ⇥1.

Such tests cannot be found in general, as this requires that the Neyman-Pearson test
should be the same for every pair of simple hypotheses. However, for one sided testing
problems, i.e., tests of the form H0 : ✓  ✓0 against H1 : ✓ > ✓0, there are a wide class of
parametric families for which UMP tests exist. These are distributions that have monotone
likelihood ratio or MLR.
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Definition 12. The family of densities {p(x|✓), ✓ 2 ⌦✓ ✓ R} with real scalar parameter ✓
is said to be of monotone likelihood ratio if there exists a function s(y) such that the

likelihood ratio

p(x|✓2)
p(x|✓1)

is a non-decreasing function of s(x) whenever ✓1 < ✓2.

Note that the same result applies for a non-increasing test statistic, by replacing t(x) by
�t(x).

Theorem 5. Suppose X has a distribution from a family that is monotone likelihood ratio

with respect to some continuous test statistic s(X) and we wish to test H0 : ✓ = ✓0 against

H1 : ✓ > ✓0, then a UMP test exists with critical region of the form s � s↵.

Proof. For testing ✓ = ✓0 against ✓ = ✓1 for any specific ✓1 2 ⇥1, the Neyman-Pearson
lemma tells us that the most powerful critical region is given by the likelihood ratio critical
region. The LR is a non-decreasing function of s(y) for any ✓1 > ✓0, and so the critical
region is of the form s � s↵. s↵ is determined by the size of the test and depends only on
✓0. Hence, this critical region is identical for all ✓1 � ✓0 and this test is UMP.

Corollary 2. If X1, . . . , Xn are i.i.d with p.d.f. of the form

p(x| ✓) = exp{a(x)b(✓) + c(✓) + d(x)}

with ✓ a scalar parameter and b(✓) strictly increasing, then for testing the null hypothesis

that ✓ = ✓0 against ✓ > ✓0 the LR test has critical regions corresponding to large values of

s =
P

a(xj) and is UMP.

Proof For any ✓1 > ✓0, the LR is

pX(x| ✓1)
pX(x| ✓0)

= exp[{b(✓1)� b(✓0)}s+ n{c(✓1)� c(✓0)}].

Since b(✓1) > b(✓0), this is monotone likelihood ratio and so the conditions of Theorem 5
are satisfied. This applies to all one-parameter exponential families, e.g. Normal, Binomial,
Poisson. There are similar results for ✓ < ✓0, when b(✓) is a decreasing function.

Example.

• Angles : take H0 to be that angles X1, . . . , Xn are i.i.d. and Uniform on [0, 2⇡).

A set of alternatives representing a type of symmetrical clustering about y = 0 has the
Xj i.i.d. with von Mises p.d.f.

exp(✓ cos y)

2⇡I0(✓)
(0  y < 2⇡; ✓ > 0).

So we test the hypothesis H0 : ✓ = 0 against the alternative ✓ > 0.
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Designing tests: composite hypotheses
❖ For two-sided tests of the form

❖ UMP tests do not usually exist. However, uniformly most powerful unbiased 
(UMPU) tests may exist.
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Definition 13. A test �(y) of H0 : ✓ 2 ⇥0 against H1 : ✓ 2 ⇥1 is called unbiased of size
↵ if

sup
✓2⇥0

E✓ {�(Y)}  ↵

and

E✓ {�(Y)} � ↵ for all ✓ 2 ⇥1.

In other words, an unbiased test is one which has higher probability of rejecting H0 when
it is false than when it is true. Note that if the power function is a continuous function of
✓ then an unbiased test of size ↵ must have size equal to ↵ on the boundary of the critical
region (since the size is less than or equal to ↵ within the critical region and greater than or
equal to ↵ outside).

Definition 14. A test which is uniformly most powerful among the set of all unbiased tests

is called uniformly most powerful unbiased.

For a scalar exponential family of the form given in Corollary 2 the following theorem
holds

Theorem 7. If X1, . . . , Xn are i.i.d with p.d.f. of the form

p(x| ✓) = exp{a(x)b(✓) + c(✓) + d(x)}

with ✓ a scalar parameter and b(✓) strictly increasing, then there exists a unique UMPU

test of size ↵, �0
, for testing the hypothesis H0 : ✓ 2 [✓1, ✓2], against the generic alternative

H1 : ✓ 2 R� [✓1, ✓2], of the form

�0(x) =

8
<

:

1 if s(x) > s2 or s(x) < s1,
�j if s(x) = sj,
0 if s1 < s(x) < s2.

(57)

where S =
P

a(xj), for which

E✓j�
0(X) = E✓j�(X) = ↵, j = 1, 2.

The boundaries of the critical region, s1, s2, and the rejection probabilities on the boundaries,

�1, �2, are determined from the conditions E✓j�
0(X) = ↵.

Example. Suppose a sample Y is drawn from an Exp(�) distribution, so that f(y|�) =
� exp(��y). Construct a uniformly most powerful unbiased test of size ↵ = 0.05 of the
hypothesis H0 : � 2 [1, 2] against the generic alternative � 2 [0, 1) [ (2,1).

For a single sample from the exponential distribution, the su�cient statistic is the ob-
served value, y. Using the previous result, the UMPU test is of the form (57). The probability
that s = si is zero for any single value si and therefore the �i’s do not need to be determined.
The boundaries of the critical region can be found from the constraints

↵ = 0.05 = 1� exp(�s1) + exp(�s2) = 1� exp(�2s1) + exp(�2s2),

from which we find s1 = 0.02532 and s2 = 3.6889. The corresponding power function ⌘(�)
is shown in Figure 2. This shows that the test is unbiased as the probability of rejecting H0

is less than or equal to the size ↵ within the region defined by H0, it is equal to ↵ on the
boundary, and greater than ↵ everywhere outside that region.

H0 : ✓ 2 [✓1, ✓2] versus H1 : ✓ < ✓1 or ✓ > ✓2
<latexit sha1_base64="qtY9wDhj6M0FJnGoLoUbxqDP5pg=">AAACW3icdZDNTttAFIXHppQQaJsWddXNVSMkFlVkG9rQClVIbLIEqQGk2LLGkzEZMZ4xM9dVIysv2RUseJWqk8SWStXe1adz7pmfk5VSWAyCB8/feLb5fKuz3d3ZffHyVe/1m0urK8P4mGmpzXVGLZdC8TEKlPy6NJwWmeRX2e3Z0r/6zo0VWn3DecmTgt4okQtG0Ulpz4zS4AvEOONIY6Ema0rDDw1ECcR3dxWdQlxk+ke9PKuyi1YcpWGbhhNow80uaAOL1v3aulHa6weD8PPH6GgIaxgeN3D4CcJBsJo+aeY87f2Mp5pVBVfIJLV2EgYlJjU1KJjki25cWV5Sdktv+MShogW3Sb3qZgH7TplC7p6Sa4WwUv9M1LSwdl5kbrOgOLN/e0vxX96kwvw4qYUqK+SKrS/KKwmoYVk0TIXhDOXcAWVGuLcCm1FDGboKu66E9qfwf7iMBuHhILo46p+eNHV0yDvynhyQkAzJKRmRczImjNyTX96W1/Ee/Q2/6++uV32vyeyRJ+O//Q0mnrPa</latexit>
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Generalised likelihood ratio test
❖ If none of the previous results apply, the likelihood ratio is usually still a good test 

statistic, leading to the generalised likelihood ratio test.

❖ Suppose we are testing

❖ We denote by p the difference in the number of degrees of freedom in the two 
hypotheses,                            , and denote the likelihood ratio by

❖ Under certain assumptions the asymptotic distribution is                                           
and critical regions of the form                                        give tests of approximately 
size    .
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One common situation in which this occurs is for multi-parameter exponential families,
for which the likelihood can be written

p(y|✓) = exp

(
pX

i=1

Ai(x)Bi(✓) + C(✓) +D(x)

)
.

Consider a test of the form H0 : B1(✓)  ✓⇤
1
against H1 : B1(✓) > ✓⇤

1
. If we take

s(x) =
P

j
A1(xj) and A = (

P
j
A2(xj), . . . ,

P
j
Ap(xj)), then the conditional distribution of

S given A is also of the exponential form and doesn’t depend on B2(✓), . . . , Bp(✓), so A is
both su�cient and complete for B2(✓), . . . , Bp(✓). The Conditionality Principle suggests we
should make inference about B1(✓) based on the conditional distribution of S given A. Tests
constructed in this way are UMPU (Ferguson 1967). The optimal one-sided test is then of the
following form. Based on observations s1 =

P
j
A1(xj), s2 =

P
j
A2(xj), . . . , sp =

P
j
Ap(xj),

we reject H0 if and only if s1 > s⇤
1
, where s⇤

1
is calculated from

PB1(✓)=✓
⇤
1
{S1 > s⇤

1
|S2 = s2, . . . , Sp = sp} = ↵.

It can be shown this is a UMPU test of size ↵.
Similarly, to construct a two-sided test of H0 : ✓⇤

1
 B1(✓)  ✓⇤⇤

1
against B1(✓) < ✓⇤

1
or

B1(✓) > ✓⇤⇤
1
, we first define the conditional power function

w✓1(�|s2, . . . , sp) = E✓1 {�(S1)|S2 = s2, . . . , Sp = sp} .
Then we can construct a two-sided conditional test of the form

�0(s1) =

⇢
1 if ss < s⇤

1
or s1 > s⇤⇤

1
,

0 if s⇤
1
 s1  s⇤⇤

1
,

where s⇤
1
and s⇤⇤

1
are chosen such that

w✓1(�
0|s2, . . . , sp) = ↵ when B(✓1) = ✓⇤

1
or B(✓1) = ✓⇤⇤

1
.

It can be shown that these tests are also UMPU of size ↵. If the test is of a simple hypothesis
B(✓1) = ✓⇤

1
against the generic alternative B(✓1) 6= ✓⇤

1
then the test is of the same form but

the conditions are that the power function is equal to ↵ and its derivative with respect to ✓
is equal to 0, as in Eq. (58).

3.14 Generalized likelihood ratio tests

In the previous sections we focussed on finding the “best” tests by one metric or another.
However, as we have seen this is not always easy and the resulting test statistics are not
always straightforward to evaluate. Under many circumstances, in the limit n ! 1, the
likelihood ratio follows a �2 distribution and so this can be used to construct a test that is
valid asymptotically.

In particular, suppose we are testing H0 : ~✓ 2 ⇥0 versus H1 : ~✓ 2 ⇥1. We define the
likelihood ratio

LX(H0, H1) =
sup~✓2⇥1

p(x|✓)
sup~✓2⇥0

p(x|✓)
and denote by p = |⇥1 � ⇥0| the di↵erence in the numbers of degrees of freedom in the
unknown parameters between the two hypotheses. Then as n ! 1

2 logLX(H0, H1) ⇠ �2

p

under H0 and tends to be larger under H1. Therefore critical regions of the form 2 logLX >
�2

p
(↵) give tests of approximately size ↵.
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is equal to 0, as in Eq. (58).

3.14 Generalized likelihood ratio tests

In the previous sections we focussed on finding the “best” tests by one metric or another.
However, as we have seen this is not always easy and the resulting test statistics are not
always straightforward to evaluate. Under many circumstances, in the limit n ! 1, the
likelihood ratio follows a �2 distribution and so this can be used to construct a test that is
valid asymptotically.

In particular, suppose we are testing H0 : ~✓ 2 ⇥0 versus H1 : ~✓ 2 ⇥1. We define the
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One common situation in which this occurs is for multi-parameter exponential families,
for which the likelihood can be written
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against the generic alternative B(✓1) 6= ✓⇤
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the conditions are that the power function is equal to ↵ and its derivative with respect to ✓
is equal to 0, as in Eq. (58).
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In the previous sections we focussed on finding the “best” tests by one metric or another.
However, as we have seen this is not always easy and the resulting test statistics are not
always straightforward to evaluate. Under many circumstances, in the limit n ! 1, the
likelihood ratio follows a �2 distribution and so this can be used to construct a test that is
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In particular, suppose we are testing H0 : ~✓ 2 ⇥0 versus H1 : ~✓ 2 ⇥1. We define the
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the conditions are that the power function is equal to ↵ and its derivative with respect to ✓
is equal to 0, as in Eq. (58).
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In the previous sections we focussed on finding the “best” tests by one metric or another.
However, as we have seen this is not always easy and the resulting test statistics are not
always straightforward to evaluate. Under many circumstances, in the limit n ! 1, the
likelihood ratio follows a �2 distribution and so this can be used to construct a test that is
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